Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orderseqlem Unicode version

Theorem orderseqlem 24323
 Description: Lemma for poseq 24324 and soseq 24325. The function value of a sequene is either in or null. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
orderseqlem.1
Assertion
Ref Expression
orderseqlem
Distinct variable groups:   ,,   ,,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem orderseqlem
StepHypRef Expression
1 feq1 5391 . . . . 5
21rexbidv 2577 . . . 4
3 orderseqlem.1 . . . 4
42, 3elab2g 2929 . . 3
54ibi 232 . 2
6 frn 5411 . . . . 5
7 unss1 3357 . . . . 5
86, 7syl 15 . . . 4
9 fvrn0 5566 . . . 4
10 ssel 3187 . . . 4
118, 9, 10ee10 1366 . . 3
1211rexlimivw 2676 . 2
135, 12syl 15 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1632   wcel 1696  cab 2282  wrex 2557   cun 3163   wss 3165  c0 3468  csn 3653  con0 4408   crn 4706  wf 5267  cfv 5271 This theorem is referenced by:  poseq  24324  soseq  24325 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
 Copyright terms: Public domain W3C validator