MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordfr Unicode version

Theorem ordfr 4407
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr  |-  ( Ord 
A  ->  _E  Fr  A )

Proof of Theorem ordfr
StepHypRef Expression
1 ordwe 4405 . 2  |-  ( Ord 
A  ->  _E  We  A )
2 wefr 4383 . 2  |-  (  _E  We  A  ->  _E  Fr  A )
31, 2syl 15 1  |-  ( Ord 
A  ->  _E  Fr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    _E cep 4303    Fr wfr 4349    We wwe 4351   Ord word 4391
This theorem is referenced by:  ordirr  4410  tz7.7  4418  onfr  4431  bnj580  28945  bnj1053  29006  bnj1071  29007
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-we 4354  df-ord 4395
  Copyright terms: Public domain W3C validator