MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordfr Structured version   Unicode version

Theorem ordfr 4588
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr  |-  ( Ord 
A  ->  _E  Fr  A )

Proof of Theorem ordfr
StepHypRef Expression
1 ordwe 4586 . 2  |-  ( Ord 
A  ->  _E  We  A )
2 wefr 4564 . 2  |-  (  _E  We  A  ->  _E  Fr  A )
31, 2syl 16 1  |-  ( Ord 
A  ->  _E  Fr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    _E cep 4484    Fr wfr 4530    We wwe 4532   Ord word 4572
This theorem is referenced by:  ordirr  4591  tz7.7  4599  onfr  4612  bnj580  29221  bnj1053  29282  bnj1071  29283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-we 4535  df-ord 4576
  Copyright terms: Public domain W3C validator