MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordir Structured version   Unicode version

Theorem ordir 836
Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
ordir  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ( ph  \/  ch )  /\  ( ps  \/  ch ) ) )

Proof of Theorem ordir
StepHypRef Expression
1 ordi 835 . 2  |-  ( ( ch  \/  ( ph  /\ 
ps ) )  <->  ( ( ch  \/  ph )  /\  ( ch  \/  ps ) ) )
2 orcom 377 . 2  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ch  \/  ( ph  /\ 
ps ) ) )
3 orcom 377 . . 3  |-  ( (
ph  \/  ch )  <->  ( ch  \/  ph )
)
4 orcom 377 . . 3  |-  ( ( ps  \/  ch )  <->  ( ch  \/  ps )
)
53, 4anbi12i 679 . 2  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  ch ) )  <->  ( ( ch  \/  ph )  /\  ( ch  \/  ps ) ) )
61, 2, 53bitr4i 269 1  |-  ( ( ( ph  /\  ps )  \/  ch )  <->  ( ( ph  \/  ch )  /\  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    \/ wo 358    /\ wa 359
This theorem is referenced by:  orddi  840  pm5.62  890  dn1  933  cadan  1401  elnn0z  10286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
  Copyright terms: Public domain W3C validator