MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordiso2 Unicode version

Theorem ordiso2 7230
Description: Generalize ordiso 7231 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )

Proof of Theorem ordiso2
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordsson 4581 . . . . . 6  |-  ( Ord 
A  ->  A  C_  On )
213ad2ant2 977 . . . . 5  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  C_  On )
32sseld 3179 . . . 4  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
x  e.  A  ->  x  e.  On )
)
4 eleq1 2343 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
5 fveq2 5525 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
6 id 19 . . . . . . . . 9  |-  ( x  =  y  ->  x  =  y )
75, 6eqeq12d 2297 . . . . . . . 8  |-  ( x  =  y  ->  (
( F `  x
)  =  x  <->  ( F `  y )  =  y ) )
84, 7imbi12d 311 . . . . . . 7  |-  ( x  =  y  ->  (
( x  e.  A  ->  ( F `  x
)  =  x )  <-> 
( y  e.  A  ->  ( F `  y
)  =  y ) ) )
98imbi2d 307 . . . . . 6  |-  ( x  =  y  ->  (
( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  ( x  e.  A  ->  ( F `
 x )  =  x ) )  <->  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
y  e.  A  -> 
( F `  y
)  =  y ) ) ) )
10 r19.21v 2630 . . . . . . 7  |-  ( A. y  e.  x  (
( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  ->  (
y  e.  A  -> 
( F `  y
)  =  y ) )  <->  ( ( F 
Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A. y  e.  x  ( y  e.  A  ->  ( F `
 y )  =  y ) ) )
11 ordelss 4408 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  C_  A )
12113ad2antl2 1118 . . . . . . . . . . . . . . 15  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  x  C_  A )
1312sselda 3180 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  x  e.  A )  /\  y  e.  x )  ->  y  e.  A )
14 pm5.5 326 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  (
( y  e.  A  ->  ( F `  y
)  =  y )  <-> 
( F `  y
)  =  y ) )
1513, 14syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  x  e.  A )  /\  y  e.  x )  ->  (
( y  e.  A  ->  ( F `  y
)  =  y )  <-> 
( F `  y
)  =  y ) )
1615ralbidva 2559 . . . . . . . . . . . 12  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( F `  y
)  =  y )  <->  A. y  e.  x  ( F `  y )  =  y ) )
17 isof1o 5822 . . . . . . . . . . . . . . . . . . . 20  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A -1-1-onto-> B
)
18173ad2ant1 976 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  F : A -1-1-onto-> B )
1918ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  F : A -1-1-onto-> B )
20 simpll3 996 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  Ord  B )
21 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  z  e.  ( F `  x
) )
22 f1of 5472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
2317, 22syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F : A --> B )
24233ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  F : A --> B )
2524ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  F : A --> B )
26 simplrl 736 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  x  e.  A )
27 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
2825, 26, 27syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( F `  x )  e.  B )
2921, 28jca 518 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  (
z  e.  ( F `
 x )  /\  ( F `  x )  e.  B ) )
30 ordtr1 4435 . . . . . . . . . . . . . . . . . . 19  |-  ( Ord 
B  ->  ( (
z  e.  ( F `
 x )  /\  ( F `  x )  e.  B )  -> 
z  e.  B ) )
3120, 29, 30sylc 56 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  z  e.  B )
32 f1ocnvfv2 5793 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A -1-1-onto-> B  /\  z  e.  B )  ->  ( F `  ( `' F `  z ) )  =  z )
3319, 31, 32syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( F `  ( `' F `  z )
)  =  z )
3433, 21eqeltrd 2357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( F `  ( `' F `  z )
)  e.  ( F `
 x ) )
35 simpll1 994 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  F  Isom  _E  ,  _E  ( A ,  B )
)
36 f1ocnv 5485 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
37 f1of 5472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( `' F : B -1-1-onto-> A  ->  `' F : B --> A )
3819, 36, 373syl 18 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  `' F : B --> A )
39 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( `' F : B --> A  /\  z  e.  B )  ->  ( `' F `  z )  e.  A
)
4038, 31, 39syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( `' F `  z )  e.  A )
41 isorel 5823 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( ( `' F `  z )  e.  A  /\  x  e.  A ) )  -> 
( ( `' F `  z )  _E  x  <->  ( F `  ( `' F `  z ) )  _E  ( F `
 x ) ) )
4235, 40, 26, 41syl12anc 1180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  (
( `' F `  z )  _E  x  <->  ( F `  ( `' F `  z ) )  _E  ( F `
 x ) ) )
43 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  x  e. 
_V
4443epelc 4307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( `' F `  z )  _E  x  <->  ( `' F `  z )  e.  x )
45 fvex 5539 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F `
 x )  e. 
_V
4645epelc 4307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  ( `' F `  z ) )  _E  ( F `
 x )  <->  ( F `  ( `' F `  z ) )  e.  ( F `  x
) )
4742, 44, 463bitr3g 278 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  (
( `' F `  z )  e.  x  <->  ( F `  ( `' F `  z ) )  e.  ( F `
 x ) ) )
4834, 47mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( `' F `  z )  e.  x )
49 simplrr 737 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  A. y  e.  x  ( F `  y )  =  y )
50 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( `' F `  z )  ->  ( F `  y )  =  ( F `  ( `' F `  z ) ) )
51 id 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( `' F `  z )  ->  y  =  ( `' F `  z ) )
5250, 51eqeq12d 2297 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' F `  z )  ->  (
( F `  y
)  =  y  <->  ( F `  ( `' F `  z ) )  =  ( `' F `  z ) ) )
5352rspcv 2880 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' F `  z )  e.  x  ->  ( A. y  e.  x  ( F `  y )  =  y  ->  ( F `  ( `' F `  z )
)  =  ( `' F `  z ) ) )
5448, 49, 53sylc 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  ( F `  ( `' F `  z )
)  =  ( `' F `  z ) )
5533, 54eqtr3d 2317 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  z  =  ( `' F `  z ) )
5655, 48eqeltrd 2357 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  ( F `  x
) )  ->  z  e.  x )
57 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  A. y  e.  x  ( F `  y )  =  y )
58 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
59 id 19 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  y  =  z )
6058, 59eqeq12d 2297 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( F `  y
)  =  y  <->  ( F `  z )  =  z ) )
6160rspccva 2883 . . . . . . . . . . . . . . . . 17  |-  ( ( A. y  e.  x  ( F `  y )  =  y  /\  z  e.  x )  ->  ( F `  z )  =  z )
6257, 61sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  ( F `  z )  =  z )
63 epel 4308 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  _E  x  <->  z  e.  x )
6463biimpri 197 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  x  ->  z  _E  x )
6564adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  z  _E  x )
66 simpll1 994 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  F  Isom  _E  ,  _E  ( A ,  B )
)
67 simpl2 959 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  Ord  A )
68 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  x  e.  A
)
6967, 68, 11syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  x  C_  A
)
7069sselda 3180 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  z  e.  A )
71 simplrl 736 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  x  e.  A )
72 isorel 5823 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  ( z  e.  A  /\  x  e.  A ) )  -> 
( z  _E  x  <->  ( F `  z )  _E  ( F `  x ) ) )
7366, 70, 71, 72syl12anc 1180 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  (
z  _E  x  <->  ( F `  z )  _E  ( F `  x )
) )
7465, 73mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  ( F `  z )  _E  ( F `  x
) )
7545epelc 4307 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  z )  _E  ( F `  x )  <->  ( F `  z )  e.  ( F `  x ) )
7674, 75sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  ( F `  z )  e.  ( F `  x
) )
7762, 76eqeltrrd 2358 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  ( x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  /\  z  e.  x )  ->  z  e.  ( F `  x
) )
7856, 77impbida 805 . . . . . . . . . . . . . 14  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  ( z  e.  ( F `  x
)  <->  z  e.  x
) )
7978eqrdv 2281 . . . . . . . . . . . . 13  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  (
x  e.  A  /\  A. y  e.  x  ( F `  y )  =  y ) )  ->  ( F `  x )  =  x )
8079expr 598 . . . . . . . . . . . 12  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  ( A. y  e.  x  ( F `  y )  =  y  ->  ( F `  x )  =  x ) )
8116, 80sylbid 206 . . . . . . . . . . 11  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  x  e.  A )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( F `  y
)  =  y )  ->  ( F `  x )  =  x ) )
8281ex 423 . . . . . . . . . 10  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
x  e.  A  -> 
( A. y  e.  x  ( y  e.  A  ->  ( F `  y )  =  y )  ->  ( F `  x )  =  x ) ) )
8382com23 72 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  ( A. y  e.  x  ( y  e.  A  ->  ( F `  y
)  =  y )  ->  ( x  e.  A  ->  ( F `  x )  =  x ) ) )
8483a2i 12 . . . . . . . 8  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  ->  A. y  e.  x  ( y  e.  A  ->  ( F `
 y )  =  y ) )  -> 
( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  ( x  e.  A  ->  ( F `
 x )  =  x ) ) )
8584a1i 10 . . . . . . 7  |-  ( x  e.  On  ->  (
( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  A. y  e.  x  ( y  e.  A  ->  ( F `
 y )  =  y ) )  -> 
( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  ( x  e.  A  ->  ( F `
 x )  =  x ) ) ) )
8610, 85syl5bi 208 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  ( y  e.  A  ->  ( F `
 y )  =  y ) )  -> 
( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  ->  ( x  e.  A  ->  ( F `
 x )  =  x ) ) ) )
879, 86tfis2 4647 . . . . 5  |-  ( x  e.  On  ->  (
( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  ->  (
x  e.  A  -> 
( F `  x
)  =  x ) ) )
8887com3l 75 . . . 4  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
x  e.  A  -> 
( x  e.  On  ->  ( F `  x
)  =  x ) ) )
893, 88mpdd 36 . . 3  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
x  e.  A  -> 
( F `  x
)  =  x ) )
9089ralrimiv 2625 . 2  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A. x  e.  A  ( F `  x )  =  x )
91 fveq2 5525 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
92 id 19 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
9391, 92eqeq12d 2297 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  =  x  <->  ( F `  z )  =  z ) )
9493rspccva 2883 . . . . . . 7  |-  ( ( A. x  e.  A  ( F `  x )  =  x  /\  z  e.  A )  ->  ( F `  z )  =  z )
9594adantll 694 . . . . . 6  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  A. x  e.  A  ( F `  x )  =  x )  /\  z  e.  A )  ->  ( F `  z )  =  z )
96 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : A --> B  /\  z  e.  A )  ->  ( F `  z
)  e.  B )
9723, 96sylan 457 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  z  e.  A
)  ->  ( F `  z )  e.  B
)
98973ad2antl1 1117 . . . . . . 7  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  z  e.  A )  ->  ( F `  z )  e.  B )
9998adantlr 695 . . . . . 6  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  A. x  e.  A  ( F `  x )  =  x )  /\  z  e.  A )  ->  ( F `  z )  e.  B )
10095, 99eqeltrrd 2358 . . . . 5  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  A. x  e.  A  ( F `  x )  =  x )  /\  z  e.  A )  ->  z  e.  B )
101100ex 423 . . . 4  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  A  -> 
z  e.  B ) )
102 simpl1 958 . . . . . . . 8  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  F  Isom  _E  ,  _E  ( A ,  B )
)
103 f1ofo 5479 . . . . . . . . 9  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
104 forn 5454 . . . . . . . . 9  |-  ( F : A -onto-> B  ->  ran  F  =  B )
10517, 103, 1043syl 18 . . . . . . . 8  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  ran  F  =  B )
106102, 105syl 15 . . . . . . 7  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  ran  F  =  B )
107106eleq2d 2350 . . . . . 6  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  ran  F  <->  z  e.  B ) )
108 f1ofn 5473 . . . . . . . . . 10  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
10917, 108syl 15 . . . . . . . . 9  |-  ( F 
Isom  _E  ,  _E  ( A ,  B )  ->  F  Fn  A
)
1101093ad2ant1 976 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  F  Fn  A )
111110adantr 451 . . . . . . 7  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  F  Fn  A )
112 fvelrnb 5570 . . . . . . 7  |-  ( F  Fn  A  ->  (
z  e.  ran  F  <->  E. w  e.  A  ( F `  w )  =  z ) )
113111, 112syl 15 . . . . . 6  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  ran  F  <->  E. w  e.  A  ( F `  w )  =  z ) )
114107, 113bitr3d 246 . . . . 5  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  B  <->  E. w  e.  A  ( F `  w )  =  z ) )
115 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
116 id 19 . . . . . . . . . . . 12  |-  ( x  =  w  ->  x  =  w )
117115, 116eqeq12d 2297 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( F `  x
)  =  x  <->  ( F `  w )  =  w ) )
118117rspcv 2880 . . . . . . . . . 10  |-  ( w  e.  A  ->  ( A. x  e.  A  ( F `  x )  =  x  ->  ( F `  w )  =  w ) )
119118a1i 10 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
w  e.  A  -> 
( A. x  e.  A  ( F `  x )  =  x  ->  ( F `  w )  =  w ) ) )
120 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( F `  w
)  =  w  /\  ( F `  w )  =  z )  -> 
( F `  w
)  =  z )
121 simpl 443 . . . . . . . . . . . . 13  |-  ( ( ( F `  w
)  =  w  /\  ( F `  w )  =  z )  -> 
( F `  w
)  =  w )
122120, 121eqtr3d 2317 . . . . . . . . . . . 12  |-  ( ( ( F `  w
)  =  w  /\  ( F `  w )  =  z )  -> 
z  =  w )
123122adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  w  e.  A )  /\  (
( F `  w
)  =  w  /\  ( F `  w )  =  z ) )  ->  z  =  w )
124 simplr 731 . . . . . . . . . . 11  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  w  e.  A )  /\  (
( F `  w
)  =  w  /\  ( F `  w )  =  z ) )  ->  w  e.  A
)
125123, 124eqeltrd 2357 . . . . . . . . . 10  |-  ( ( ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B
)  /\  w  e.  A )  /\  (
( F `  w
)  =  w  /\  ( F `  w )  =  z ) )  ->  z  e.  A
)
126125exp43 595 . . . . . . . . 9  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
w  e.  A  -> 
( ( F `  w )  =  w  ->  ( ( F `
 w )  =  z  ->  z  e.  A ) ) ) )
127119, 126syldd 61 . . . . . . . 8  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  (
w  e.  A  -> 
( A. x  e.  A  ( F `  x )  =  x  ->  ( ( F `
 w )  =  z  ->  z  e.  A ) ) ) )
128127com23 72 . . . . . . 7  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  ( A. x  e.  A  ( F `  x )  =  x  ->  (
w  e.  A  -> 
( ( F `  w )  =  z  ->  z  e.  A
) ) ) )
129128imp 418 . . . . . 6  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
w  e.  A  -> 
( ( F `  w )  =  z  ->  z  e.  A
) ) )
130129rexlimdv 2666 . . . . 5  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  ( E. w  e.  A  ( F `  w )  =  z  ->  z  e.  A ) )
131114, 130sylbid 206 . . . 4  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  B  -> 
z  e.  A ) )
132101, 131impbid 183 . . 3  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  (
z  e.  A  <->  z  e.  B ) )
133132eqrdv 2281 . 2  |-  ( ( ( F  Isom  _E  ,  _E  ( A ,  B
)  /\  Ord  A  /\  Ord  B )  /\  A. x  e.  A  ( F `  x )  =  x )  ->  A  =  B )
13490, 133mpdan 649 1  |-  ( ( F  Isom  _E  ,  _E  ( A ,  B )  /\  Ord  A  /\  Ord  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    _E cep 4303   Ord word 4391   Oncon0 4392   `'ccnv 4688   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256
This theorem is referenced by:  ordiso  7231  oieu  7254  oiid  7256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264
  Copyright terms: Public domain W3C validator