MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Unicode version

Theorem ordn2lp 4412
Description: An ordinal class cannot an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 4410 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
2 ordtr 4406 . . 3  |-  ( Ord 
A  ->  Tr  A
)
3 trel 4120 . . 3  |-  ( Tr  A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
42, 3syl 15 . 2  |-  ( Ord 
A  ->  ( ( A  e.  B  /\  B  e.  A )  ->  A  e.  A ) )
51, 4mtod 168 1  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    e. wcel 1684   Tr wtr 4113   Ord word 4391
This theorem is referenced by:  ordtri1  4425  ordnbtwn  4483  suc11  4496  smoord  6382  unblem1  7109  cantnfp1lem3  7382  cardprclem  7612
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-fr 4352  df-we 4354  df-ord 4395
  Copyright terms: Public domain W3C validator