Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordn2lp Unicode version

Theorem ordn2lp 4515
 Description: An ordinal class cannot an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordn2lp

Proof of Theorem ordn2lp
StepHypRef Expression
1 ordirr 4513 . 2
2 ordtr 4509 . . 3
3 trel 4222 . . 3
42, 3syl 15 . 2
51, 4mtod 168 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358   wcel 1715   wtr 4215   word 4494 This theorem is referenced by:  ordtri1  4528  ordnbtwn  4586  suc11  4599  smoord  6524  unblem1  7256  cantnfp1lem3  7529  cardprclem  7759 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-tr 4216  df-eprel 4408  df-fr 4455  df-we 4457  df-ord 4498
 Copyright terms: Public domain W3C validator