MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordpinq Unicode version

Theorem ordpinq 8567
Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ordpinq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )

Proof of Theorem ordpinq
StepHypRef Expression
1 brinxp 4752 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  A (  <pQ  i^i  ( Q.  X.  Q. ) ) B ) )
2 df-ltnq 8542 . . . 4  |-  <Q  =  (  <pQ  i^i  ( Q.  X.  Q. ) )
32breqi 4029 . . 3  |-  ( A 
<Q  B  <->  A (  <pQ  i^i  ( Q.  X.  Q. ) ) B )
41, 3syl6bbr 254 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  A  <Q  B ) )
5 relxp 4794 . . . . 5  |-  Rel  ( N.  X.  N. )
6 elpqn 8549 . . . . 5  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
7 1st2nd 6166 . . . . 5  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
85, 6, 7sylancr 644 . . . 4  |-  ( A  e.  Q.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
9 elpqn 8549 . . . . 5  |-  ( B  e.  Q.  ->  B  e.  ( N.  X.  N. ) )
10 1st2nd 6166 . . . . 5  |-  ( ( Rel  ( N.  X.  N. )  /\  B  e.  ( N.  X.  N. ) )  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
115, 9, 10sylancr 644 . . . 4  |-  ( B  e.  Q.  ->  B  =  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
128, 11breqan12d 4038 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  <. ( 1st `  A ) ,  ( 2nd `  A )
>.  <pQ  <. ( 1st `  B
) ,  ( 2nd `  B ) >. )
)
13 ordpipq 8566 . . 3  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  <pQ  <. ( 1st `  B ) ,  ( 2nd `  B
) >. 
<->  ( ( 1st `  A
)  .N  ( 2nd `  B ) )  <N 
( ( 1st `  B
)  .N  ( 2nd `  A ) ) )
1412, 13syl6bb 252 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <pQ  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
154, 14bitr3d 246 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  ( ( 1st `  A )  .N  ( 2nd `  B
) )  <N  (
( 1st `  B
)  .N  ( 2nd `  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151   <.cop 3643   class class class wbr 4023    X. cxp 4687   Rel wrel 4694   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   N.cnpi 8466    .N cmi 8468    <N clti 8469    <pQ cltpq 8472   Q.cnq 8474    <Q cltq 8480
This theorem is referenced by:  ltsonq  8593  lterpq  8594  ltanq  8595  ltmnq  8596  ltexnq  8599  archnq  8604
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-omul 6484  df-ni 8496  df-mi 8498  df-lti 8499  df-ltpq 8534  df-nq 8536  df-ltnq 8542
  Copyright terms: Public domain W3C validator