MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Unicode version

Theorem ordsssuc2 4604
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 4524 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
21biimprd 215 . . . 4  |-  ( A  e.  _V  ->  ( Ord  A  ->  A  e.  On ) )
32anim1d 548 . . 3  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  e.  On  /\  B  e.  On ) ) )
4 onsssuc 4603 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
53, 4syl6 31 . 2  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
6 annim 415 . . . . 5  |-  ( ( B  e.  On  /\  -.  A  e.  _V ) 
<->  -.  ( B  e.  On  ->  A  e.  _V ) )
7 ssexg 4284 . . . . . . 7  |-  ( ( A  C_  B  /\  B  e.  On )  ->  A  e.  _V )
87ex 424 . . . . . 6  |-  ( A 
C_  B  ->  ( B  e.  On  ->  A  e.  _V ) )
9 elex 2901 . . . . . . 7  |-  ( A  e.  suc  B  ->  A  e.  _V )
109a1d 23 . . . . . 6  |-  ( A  e.  suc  B  -> 
( B  e.  On  ->  A  e.  _V )
)
118, 10pm5.21ni 342 . . . . 5  |-  ( -.  ( B  e.  On  ->  A  e.  _V )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
126, 11sylbi 188 . . . 4  |-  ( ( B  e.  On  /\  -.  A  e.  _V )  ->  ( A  C_  B 
<->  A  e.  suc  B
) )
1312expcom 425 . . 3  |-  ( -.  A  e.  _V  ->  ( B  e.  On  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
1413adantld 454 . 2  |-  ( -.  A  e.  _V  ->  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
155, 14pm2.61i 158 1  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717   _Vcvv 2893    C_ wss 3257   Ord word 4515   Oncon0 4516   suc csuc 4518
This theorem is referenced by:  ordunisuc2  4758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-sep 4265  ax-nul 4273  ax-pr 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-ral 2648  df-rex 2649  df-rab 2652  df-v 2895  df-sbc 3099  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-pss 3273  df-nul 3566  df-if 3677  df-sn 3757  df-pr 3758  df-op 3760  df-uni 3952  df-br 4148  df-opab 4202  df-tr 4238  df-eprel 4429  df-po 4438  df-so 4439  df-fr 4476  df-we 4478  df-ord 4519  df-on 4520  df-suc 4522
  Copyright terms: Public domain W3C validator