MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsssuc2 Unicode version

Theorem ordsssuc2 4481
Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsssuc2  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )

Proof of Theorem ordsssuc2
StepHypRef Expression
1 elong 4400 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
21biimprd 214 . . . 4  |-  ( A  e.  _V  ->  ( Ord  A  ->  A  e.  On ) )
32anim1d 547 . . 3  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  e.  On  /\  B  e.  On ) ) )
4 onsssuc 4480 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
53, 4syl6 29 . 2  |-  ( A  e.  _V  ->  (
( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
6 annim 414 . . . . 5  |-  ( ( B  e.  On  /\  -.  A  e.  _V ) 
<->  -.  ( B  e.  On  ->  A  e.  _V ) )
7 ssexg 4160 . . . . . . 7  |-  ( ( A  C_  B  /\  B  e.  On )  ->  A  e.  _V )
87ex 423 . . . . . 6  |-  ( A 
C_  B  ->  ( B  e.  On  ->  A  e.  _V ) )
9 elex 2796 . . . . . . 7  |-  ( A  e.  suc  B  ->  A  e.  _V )
109a1d 22 . . . . . 6  |-  ( A  e.  suc  B  -> 
( B  e.  On  ->  A  e.  _V )
)
118, 10pm5.21ni 341 . . . . 5  |-  ( -.  ( B  e.  On  ->  A  e.  _V )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
126, 11sylbi 187 . . . 4  |-  ( ( B  e.  On  /\  -.  A  e.  _V )  ->  ( A  C_  B 
<->  A  e.  suc  B
) )
1312expcom 424 . . 3  |-  ( -.  A  e.  _V  ->  ( B  e.  On  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
1413adantld 453 . 2  |-  ( -.  A  e.  _V  ->  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) ) )
155, 14pm2.61i 156 1  |-  ( ( Ord  A  /\  B  e.  On )  ->  ( A  C_  B  <->  A  e.  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788    C_ wss 3152   Ord word 4391   Oncon0 4392   suc csuc 4394
This theorem is referenced by:  ordunisuc2  4635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398
  Copyright terms: Public domain W3C validator