Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsuccl Unicode version

Theorem ordsuccl 25205
Description: If a successor of  A belongs to an ordinal, so does  A. (Contributed by FL, 20-Mar-2011.)
Assertion
Ref Expression
ordsuccl  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  A  e.  B )

Proof of Theorem ordsuccl
StepHypRef Expression
1 ordtr 4422 . 2  |-  ( Ord 
B  ->  Tr  B
)
2 trsuc 4492 . 2  |-  ( ( Tr  B  /\  suc  A  e.  B )  ->  A  e.  B )
31, 2sylan 457 1  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   Tr wtr 4129   Ord word 4407   suc csuc 4410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-un 3170  df-in 3172  df-ss 3179  df-sn 3659  df-uni 3844  df-tr 4130  df-ord 4411  df-suc 4414
  Copyright terms: Public domain W3C validator