MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucss Unicode version

Theorem ordsucss 4609
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )

Proof of Theorem ordsucss
StepHypRef Expression
1 ordelord 4414 . . . . 5  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  A )
2 ordnbtwn 4483 . . . . . . . 8  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  suc  A ) )
3 imnan 411 . . . . . . . 8  |-  ( ( A  e.  B  ->  -.  B  e.  suc  A )  <->  -.  ( A  e.  B  /\  B  e. 
suc  A ) )
42, 3sylibr 203 . . . . . . 7  |-  ( Ord 
A  ->  ( A  e.  B  ->  -.  B  e.  suc  A ) )
54adantr 451 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  ->  -.  B  e.  suc  A ) )
6 ordsuc 4605 . . . . . . 7  |-  ( Ord 
A  <->  Ord  suc  A )
7 ordtri1 4425 . . . . . . 7  |-  ( ( Ord  suc  A  /\  Ord  B )  ->  ( suc  A  C_  B  <->  -.  B  e.  suc  A ) )
86, 7sylanb 458 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( suc  A 
C_  B  <->  -.  B  e.  suc  A ) )
95, 8sylibrd 225 . . . . 5  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  ->  suc  A  C_  B ) )
101, 9sylan 457 . . . 4  |-  ( ( ( Ord  B  /\  A  e.  B )  /\  Ord  B )  -> 
( A  e.  B  ->  suc  A  C_  B
) )
1110exp31 587 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) ) ) )
1211pm2.43b 46 . 2  |-  ( A  e.  B  ->  ( Ord  B  ->  ( A  e.  B  ->  suc  A  C_  B ) ) )
1312pm2.43b 46 1  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   Ord word 4391   suc csuc 4394
This theorem is referenced by:  ordelsuc  4611  ordsucelsuc  4613  orduniorsuc  4621  tfindsg2  4652  oaordi  6544  oawordeulem  6552  omeulem2  6581  oeworde  6591  oelimcl  6598  oeeui  6600  nnaordi  6616  nnawordex  6635  oaabs2  6643  omxpenlem  6963  inf3lem5  7333  cantnflt  7373  cantnflem1d  7390  cnfcom  7403  r1ordg  7450  rankr1ag  7474  cfslb2n  7894  cfsmolem  7896  fin23lem26  7951  isf32lem3  7981  ttukeylem7  8142  indpi  8531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398
  Copyright terms: Public domain W3C validator