MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucsssuc Unicode version

Theorem ordsucsssuc 4745
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
ordsucsssuc  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  suc  A  C_  suc  B ) )

Proof of Theorem ordsucsssuc
StepHypRef Expression
1 ordsucelsuc 4744 . . . 4  |-  ( Ord 
A  ->  ( B  e.  A  <->  suc  B  e.  suc  A ) )
21notbid 286 . . 3  |-  ( Ord 
A  ->  ( -.  B  e.  A  <->  -.  suc  B  e.  suc  A ) )
32adantr 452 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( -.  B  e.  A  <->  -.  suc  B  e.  suc  A ) )
4 ordtri1 4557 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
5 ordsuc 4736 . . 3  |-  ( Ord 
A  <->  Ord  suc  A )
6 ordsuc 4736 . . 3  |-  ( Ord 
B  <->  Ord  suc  B )
7 ordtri1 4557 . . 3  |-  ( ( Ord  suc  A  /\  Ord  suc  B )  -> 
( suc  A  C_  suc  B  <->  -.  suc  B  e.  suc  A ) )
85, 6, 7syl2anb 466 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( suc  A 
C_  suc  B  <->  -.  suc  B  e.  suc  A ) )
93, 4, 83bitr4d 277 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  C_  B  <->  suc  A  C_  suc  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717    C_ wss 3265   Ord word 4523   suc csuc 4526
This theorem is referenced by:  oawordri  6731  oeworde  6774  nnawordi  6802  bndrank  7702  ackbij1b  8054  onsuct0  25907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-tr 4246  df-eprel 4437  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-suc 4530
  Copyright terms: Public domain W3C validator