MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Unicode version

Theorem ordsucuniel 4615
Description: Given an element  A of the union of an ordinal  B,  suc  A is an element of  B itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel  |-  ( Ord 
B  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 4585 . . 3  |-  ( Ord 
B  ->  Ord  U. B
)
2 ordelord 4414 . . . 4  |-  ( ( Ord  U. B  /\  A  e.  U. B )  ->  Ord  A )
32ex 423 . . 3  |-  ( Ord  U. B  ->  ( A  e.  U. B  ->  Ord  A ) )
41, 3syl 15 . 2  |-  ( Ord 
B  ->  ( A  e.  U. B  ->  Ord  A ) )
5 ordelord 4414 . . . 4  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  Ord  suc  A )
6 ordsuc 4605 . . . 4  |-  ( Ord 
A  <->  Ord  suc  A )
75, 6sylibr 203 . . 3  |-  ( ( Ord  B  /\  suc  A  e.  B )  ->  Ord  A )
87ex 423 . 2  |-  ( Ord 
B  ->  ( suc  A  e.  B  ->  Ord  A ) )
9 ordsson 4581 . . . . . 6  |-  ( Ord 
B  ->  B  C_  On )
10 ordunisssuc 4495 . . . . . 6  |-  ( ( B  C_  On  /\  Ord  A )  ->  ( U. B  C_  A  <->  B  C_  suc  A ) )
119, 10sylan 457 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( U. B  C_  A  <->  B  C_  suc  A ) )
12 ordtri1 4425 . . . . . 6  |-  ( ( Ord  U. B  /\  Ord  A )  ->  ( U. B  C_  A  <->  -.  A  e.  U. B ) )
131, 12sylan 457 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( U. B  C_  A  <->  -.  A  e.  U. B ) )
14 ordtri1 4425 . . . . . 6  |-  ( ( Ord  B  /\  Ord  suc 
A )  ->  ( B  C_  suc  A  <->  -.  suc  A  e.  B ) )
156, 14sylan2b 461 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  C_ 
suc  A  <->  -.  suc  A  e.  B ) )
1611, 13, 153bitr3d 274 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( -.  A  e.  U. B  <->  -.  suc  A  e.  B ) )
1716con4bid 284 . . 3  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )
1817ex 423 . 2  |-  ( Ord 
B  ->  ( Ord  A  ->  ( A  e. 
U. B  <->  suc  A  e.  B ) ) )
194, 8, 18pm5.21ndd 343 1  |-  ( Ord 
B  ->  ( A  e.  U. B  <->  suc  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   U.cuni 3827   Ord word 4391   Oncon0 4392   suc csuc 4394
This theorem is referenced by:  dfac12lem1  7769  dfac12lem2  7770  nofulllem5  23771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398
  Copyright terms: Public domain W3C validator