MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas Structured version   Unicode version

Theorem ordtbas 17258
Description: In a total order, the finite intersections of the open rays generates the set of open intervals, but no more - these four collections form a subbasis for the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
ordtval.4  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
Assertion
Ref Expression
ordtbas  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( ( { X }  u.  ( A  u.  B ) )  u.  C ) )
Distinct variable groups:    a, b, A    x, a, y, R, b    X, a, b, x, y    B, a, b
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y, a, b)

Proof of Theorem ordtbas
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4407 . . . . . 6  |-  { X }  e.  _V
2 ssun2 3513 . . . . . . 7  |-  ( A  u.  B )  C_  ( { X }  u.  ( A  u.  B
) )
3 ordtval.1 . . . . . . . . . 10  |-  X  =  dom  R
4 ordtval.2 . . . . . . . . . 10  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
5 ordtval.3 . . . . . . . . . 10  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
63, 4, 5ordtuni 17256 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  =  U. ( { X }  u.  ( A  u.  B
) ) )
7 dmexg 5132 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
83, 7syl5eqel 2522 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  e.  _V )
96, 8eqeltrrd 2513 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  U. ( { X }  u.  ( A  u.  B ) )  e. 
_V )
10 uniexb 4754 . . . . . . . 8  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  <->  U. ( { X }  u.  ( A  u.  B
) )  e.  _V )
119, 10sylibr 205 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  e. 
_V )
12 ssexg 4351 . . . . . . 7  |-  ( ( ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
)  /\  ( { X }  u.  ( A  u.  B )
)  e.  _V )  ->  ( A  u.  B
)  e.  _V )
132, 11, 12sylancr 646 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  e.  _V )
14 elfiun 7437 . . . . . 6  |-  ( ( { X }  e.  _V  /\  ( A  u.  B )  e.  _V )  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  <->  ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi `  ( A  u.  B )
)  \/  E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) ) ) )
151, 13, 14sylancr 646 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  <->  ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi `  ( A  u.  B )
)  \/  E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) ) ) )
16 fisn 7434 . . . . . . . . 9  |-  ( fi
`  { X }
)  =  { X }
17 ssun1 3512 . . . . . . . . 9  |-  { X }  C_  ( { X }  u.  ( ( A  u.  B )  u.  C ) )
1816, 17eqsstri 3380 . . . . . . . 8  |-  ( fi
`  { X }
)  C_  ( { X }  u.  (
( A  u.  B
)  u.  C ) )
1918sseli 3346 . . . . . . 7  |-  ( z  e.  ( fi `  { X } )  -> 
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) )
2019a1i 11 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  { X } )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
21 ordtval.4 . . . . . . . . 9  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
223, 4, 5, 21ordtbas2 17257 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
23 ssun2 3513 . . . . . . . 8  |-  ( ( A  u.  B )  u.  C )  C_  ( { X }  u.  ( ( A  u.  B )  u.  C
) )
2422, 23syl6eqss 3400 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) )
2524sseld 3349 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
26 fipwuni 7433 . . . . . . . . . . . . . . 15  |-  ( fi
`  ( A  u.  B ) )  C_  ~P U. ( A  u.  B )
2726sseli 3346 . . . . . . . . . . . . . 14  |-  ( n  e.  ( fi `  ( A  u.  B
) )  ->  n  e.  ~P U. ( A  u.  B ) )
2827elpwid 3810 . . . . . . . . . . . . 13  |-  ( n  e.  ( fi `  ( A  u.  B
) )  ->  n  C_ 
U. ( A  u.  B ) )
2928ad2antll 711 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_ 
U. ( A  u.  B ) )
302unissi 4040 . . . . . . . . . . . . . 14  |-  U. ( A  u.  B )  C_ 
U. ( { X }  u.  ( A  u.  B ) )
3130, 6syl5sseqr 3399 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  U. ( A  u.  B )  C_  X
)
3231adantr 453 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  U. ( A  u.  B )  C_  X )
3329, 32sstrd 3360 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_  X )
34 simprl 734 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  e.  ( fi `  { X } ) )
3534, 16syl6eleq 2528 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  e.  { X } )
36 elsni 3840 . . . . . . . . . . . 12  |-  ( m  e.  { X }  ->  m  =  X )
3735, 36syl 16 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  m  =  X )
3833, 37sseqtr4d 3387 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  C_  m )
39 dfss1 3547 . . . . . . . . . 10  |-  ( n 
C_  m  <->  ( m  i^i  n )  =  n )
4038, 39sylib 190 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
m  i^i  n )  =  n )
4124sselda 3350 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  n  e.  ( fi `  ( A  u.  B )
) )  ->  n  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
4241adantrl 698 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  n  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
4340, 42eqeltrd 2512 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
m  i^i  n )  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
44 eleq1 2498 . . . . . . . 8  |-  ( z  =  ( m  i^i  n )  ->  (
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) )  <->  ( m  i^i  n )  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4543, 44syl5ibrcom 215 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  { X }
)  /\  n  e.  ( fi `  ( A  u.  B ) ) ) )  ->  (
z  =  ( m  i^i  n )  -> 
z  e.  ( { X }  u.  (
( A  u.  B
)  u.  C ) ) ) )
4645rexlimdvva 2839 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4720, 25, 463jaod 1249 . . . . 5  |-  ( R  e.  TosetRel  ->  ( ( z  e.  ( fi `  { X } )  \/  z  e.  ( fi
`  ( A  u.  B ) )  \/ 
E. m  e.  ( fi `  { X } ) E. n  e.  ( fi `  ( A  u.  B )
) z  =  ( m  i^i  n ) )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4815, 47sylbid 208 . . . 4  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( { X }  u.  ( A  u.  B )
) )  ->  z  e.  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) ) )
4948ssrdv 3356 . . 3  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  C_  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
50 ssfii 7426 . . . . . 6  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  ->  ( { X }  u.  ( A  u.  B
) )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5111, 50syl 16 . . . . 5  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5251unssad 3526 . . . 4  |-  ( R  e.  TosetRel  ->  { X }  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
53 fiss 7431 . . . . . 6  |-  ( ( ( { X }  u.  ( A  u.  B
) )  e.  _V  /\  ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
) )  ->  ( fi `  ( A  u.  B ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5411, 2, 53sylancl 645 . . . . 5  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5522, 54eqsstr3d 3385 . . . 4  |-  ( R  e.  TosetRel  ->  ( ( A  u.  B )  u.  C )  C_  ( fi `  ( { X }  u.  ( A  u.  B ) ) ) )
5652, 55unssd 3525 . . 3  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( ( A  u.  B )  u.  C ) )  C_  ( fi `  ( { X }  u.  ( A  u.  B )
) ) )
5749, 56eqssd 3367 . 2  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( { X }  u.  ( ( A  u.  B )  u.  C
) ) )
58 unass 3506 . 2  |-  ( ( { X }  u.  ( A  u.  B
) )  u.  C
)  =  ( { X }  u.  (
( A  u.  B
)  u.  C ) )
5957, 58syl6eqr 2488 1  |-  ( R  e.  TosetRel  ->  ( fi `  ( { X }  u.  ( A  u.  B
) ) )  =  ( ( { X }  u.  ( A  u.  B ) )  u.  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    = wceq 1653    e. wcel 1726   E.wrex 2708   {crab 2711   _Vcvv 2958    u. cun 3320    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   {csn 3816   U.cuni 4017   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   ran crn 4881   ` cfv 5456    e. cmpt2 6085   ficfi 7417    TosetRel ctsr 14627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-fin 7115  df-fi 7418  df-ps 14631  df-tsr 14632
  Copyright terms: Public domain W3C validator