MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Unicode version

Theorem ordtbas2 16921
Description: Lemma for ordtbas 16922. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
ordtval.4  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
Assertion
Ref Expression
ordtbas2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Distinct variable groups:    a, b, A    x, a, y, R, b    X, a, b, x, y    B, a, b
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y, a, b)

Proof of Theorem ordtbas2
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3338 . . . . . 6  |-  A  C_  ( A  u.  B
)
2 ssun2 3339 . . . . . . 7  |-  ( A  u.  B )  C_  ( { X }  u.  ( A  u.  B
) )
3 ordtval.1 . . . . . . . . . 10  |-  X  =  dom  R
4 ordtval.2 . . . . . . . . . 10  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
5 ordtval.3 . . . . . . . . . 10  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
63, 4, 5ordtuni 16920 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  =  U. ( { X }  u.  ( A  u.  B
) ) )
7 dmexg 4939 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
83, 7syl5eqel 2367 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  e.  _V )
96, 8eqeltrrd 2358 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  U. ( { X }  u.  ( A  u.  B ) )  e. 
_V )
10 uniexb 4563 . . . . . . . 8  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  <->  U. ( { X }  u.  ( A  u.  B
) )  e.  _V )
119, 10sylibr 203 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  e. 
_V )
12 ssexg 4160 . . . . . . 7  |-  ( ( ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
)  /\  ( { X }  u.  ( A  u.  B )
)  e.  _V )  ->  ( A  u.  B
)  e.  _V )
132, 11, 12sylancr 644 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  e.  _V )
14 ssexg 4160 . . . . . 6  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
151, 13, 14sylancr 644 . . . . 5  |-  ( R  e.  TosetRel  ->  A  e.  _V )
16 ssun2 3339 . . . . . 6  |-  B  C_  ( A  u.  B
)
17 ssexg 4160 . . . . . 6  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1816, 13, 17sylancr 644 . . . . 5  |-  ( R  e.  TosetRel  ->  B  e.  _V )
19 elfiun 7183 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( z  e.  ( fi `  ( A  u.  B ) )  <-> 
( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B )  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
2015, 18, 19syl2anc 642 . . . 4  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  <->  ( z  e.  ( fi `  A
)  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
213, 4ordtbaslem 16918 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
2221sseq1d 3205 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( ( fi
`  A )  C_  ( A  u.  B
)  <->  A  C_  ( A  u.  B ) ) )
231, 22mpbiri 224 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  ( A  u.  B )
)
24 ssun1 3338 . . . . . . 7  |-  ( A  u.  B )  C_  ( ( A  u.  B )  u.  C
)
2523, 24syl6ss 3191 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  (
( A  u.  B
)  u.  C ) )
2625sseld 3179 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  A
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
27 cnvtsr 14331 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  `' R  e.  TosetRel  )
28 df-rn 4700 . . . . . . . . . . . 12  |-  ran  R  =  dom  `' R
29 eqid 2283 . . . . . . . . . . . 12  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )
3028, 29ordtbaslem 16918 . . . . . . . . . . 11  |-  ( `' R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
3127, 30syl 15 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
32 tsrps 14330 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  R  e.  PosetRel )
333psrn 14318 . . . . . . . . . . . . . . 15  |-  ( R  e.  PosetRel  ->  X  =  ran  R )
3432, 33syl 15 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  X  =  ran  R )
35 vex 2791 . . . . . . . . . . . . . . . . . . 19  |-  y  e. 
_V
36 vex 2791 . . . . . . . . . . . . . . . . . . 19  |-  x  e. 
_V
3735, 36brcnv 4864 . . . . . . . . . . . . . . . . . 18  |-  ( y `' R x  <->  x R
y )
3837bicomi 193 . . . . . . . . . . . . . . . . 17  |-  ( x R y  <->  y `' R x )
3938notbii 287 . . . . . . . . . . . . . . . 16  |-  ( -.  x R y  <->  -.  y `' R x )
4039a1i 10 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( -.  x R y  <->  -.  y `' R x ) )
4134, 40rabeqbidv 2783 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  ran  R  |  -.  y `' R x } )
4234, 41mpteq12dv 4098 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
4342rneqd 4906 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
445, 43syl5eq 2327 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  B  =  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )
4544fveq2d 5529 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ( fi `  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) ) )
4631, 45, 443eqtr4d 2325 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  B )
4746sseq1d 3205 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( ( fi
`  B )  C_  ( A  u.  B
)  <->  B  C_  ( A  u.  B ) ) )
4816, 47mpbiri 224 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  ( A  u.  B )
)
4948, 24syl6ss 3191 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  (
( A  u.  B
)  u.  C ) )
5049sseld 3179 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  B
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
51 ssun2 3339 . . . . . . . 8  |-  C  C_  ( ( A  u.  B )  u.  C
)
5221, 4syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
5352eleq2d 2350 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ) )
54 vex 2791 . . . . . . . . . . . . . . 15  |-  m  e. 
_V
55 breq2 4027 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
y R x  <->  y R
a ) )
5655notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( -.  y R x  <->  -.  y R a ) )
5756rabbidv 2780 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R a } )
5857cbvmptv 4111 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( a  e.  X  |->  { y  e.  X  |  -.  y R a } )
5958elrnmpt 4926 . . . . . . . . . . . . . . 15  |-  ( m  e.  _V  ->  (
m  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
6054, 59ax-mp 8 . . . . . . . . . . . . . 14  |-  ( m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } )
6153, 60syl6bb 252 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
6246, 5syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
6362eleq2d 2350 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) ) )
64 vex 2791 . . . . . . . . . . . . . . 15  |-  n  e. 
_V
65 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  (
x R y  <->  b R
y ) )
6665notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  ( -.  x R y  <->  -.  b R y ) )
6766rabbidv 2780 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  X  |  -.  b R y } )
6867cbvmptv 4111 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( b  e.  X  |->  { y  e.  X  |  -.  b R y } )
6968elrnmpt 4926 . . . . . . . . . . . . . . 15  |-  ( n  e.  _V  ->  (
n  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
7064, 69ax-mp 8 . . . . . . . . . . . . . 14  |-  ( n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )
7163, 70syl6bb 252 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
7261, 71anbi12d 691 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  <->  ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) ) )
73 reeanv 2707 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  <-> 
( E. a  e.  X  m  =  {
y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  {
y  e.  X  |  -.  b R y } ) )
74 ineq12 3365 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } ) )
75 inrab 3440 . . . . . . . . . . . . . . . 16  |-  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }
7674, 75syl6eq 2331 . . . . . . . . . . . . . . 15  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )
7776reximi 2650 . . . . . . . . . . . . . 14  |-  ( E. b  e.  X  ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7877reximi 2650 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7973, 78sylbir 204 . . . . . . . . . . . 12  |-  ( ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8072, 79syl6bi 219 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) )
8180imp 418 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8254inex1 4155 . . . . . . . . . . 11  |-  ( m  i^i  n )  e. 
_V
83 eqid 2283 . . . . . . . . . . . 12  |-  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  =  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8483elrnmpt2g 5956 . . . . . . . . . . 11  |-  ( ( m  i^i  n )  e.  _V  ->  (
( m  i^i  n
)  e.  ran  (
a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
8582, 84ax-mp 8 . . . . . . . . . 10  |-  ( ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8681, 85sylibr 203 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
87 ordtval.4 . . . . . . . . 9  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8886, 87syl6eleqr 2374 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  C
)
8951, 88sseldi 3178 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) )
90 eleq1 2343 . . . . . . 7  |-  ( z  =  ( m  i^i  n )  ->  (
z  e.  ( ( A  u.  B )  u.  C )  <->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) ) )
9189, 90syl5ibrcom 213 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( z  =  ( m  i^i  n
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9291rexlimdvva 2674 . . . . 5  |-  ( R  e.  TosetRel  ->  ( E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n )  ->  z  e.  ( ( A  u.  B
)  u.  C ) ) )
9326, 50, 923jaod 1246 . . . 4  |-  ( R  e.  TosetRel  ->  ( ( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) )  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9420, 93sylbid 206 . . 3  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9594ssrdv 3185 . 2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  (
( A  u.  B
)  u.  C ) )
96 ssfii 7172 . . . 4  |-  ( ( A  u.  B )  e.  _V  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B )
) )
9713, 96syl 15 . . 3  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
9897adantr 451 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
99 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  X )
100 eqidd 2284 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )
10157eqeq2d 2294 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x }  <->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } ) )
102101rspcev 2884 . . . . . . . . . . . . . 14  |-  ( ( a  e.  X  /\  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
10399, 100, 102syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
1048adantr 451 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  X  e.  _V )
105 rabexg 4164 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R a }  e.  _V )
106 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
107106elrnmpt 4926 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  y R a }  e.  _V  ->  ( { y  e.  X  |  -.  y R a }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
108104, 105, 1073syl 18 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
109103, 108mpbird 223 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
110109, 4syl6eleqr 2374 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  A )
1111, 110sseldi 3178 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( A  u.  B
) )
11298, 111sseldd 3181 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( fi `  ( A  u.  B ) ) )
113 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  X )
114 eqidd 2284 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )
11567eqeq2d 2294 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  ( { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y }  <->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } ) )
116115rspcev 2884 . . . . . . . . . . . . . 14  |-  ( ( b  e.  X  /\  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
117113, 114, 116syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
118 rabexg 4164 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  b R y }  e.  _V )
119 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
120119elrnmpt 4926 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  b R y }  e.  _V  ->  ( { y  e.  X  |  -.  b R y }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
121104, 118, 1203syl 18 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
122117, 121mpbird 223 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
123122, 5syl6eleqr 2374 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  B )
12416, 123sseldi 3178 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( A  u.  B
) )
12598, 124sseldd 3181 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B ) ) )
126 fiin 7175 . . . . . . . . 9  |-  ( ( { y  e.  X  |  -.  y R a }  e.  ( fi
`  ( A  u.  B ) )  /\  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B
) ) )  -> 
( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi
`  ( A  u.  B ) ) )
127112, 125, 126syl2anc 642 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi `  ( A  u.  B
) ) )
12875, 127syl5eqelr 2368 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi
`  ( A  u.  B ) ) )
129128ralrimivva 2635 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) ) )
13083fmpt2 6191 . . . . . 6  |-  ( A. a  e.  X  A. b  e.  X  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) )  <->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
131129, 130sylib 188 . . . . 5  |-  ( R  e.  TosetRel  ->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
132 frn 5395 . . . . 5  |-  ( ( a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B ) )  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
133131, 132syl 15 . . . 4  |-  ( R  e.  TosetRel  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
13487, 133syl5eqss 3222 . . 3  |-  ( R  e.  TosetRel  ->  C  C_  ( fi `  ( A  u.  B ) ) )
13597, 134unssd 3351 . 2  |-  ( R  e.  TosetRel  ->  ( ( A  u.  B )  u.  C )  C_  ( fi `  ( A  u.  B ) ) )
13695, 135eqssd 3196 1  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   `'ccnv 4688   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255    e. cmpt2 5860   ficfi 7164   PosetRelcps 14301    TosetRel ctsr 14302
This theorem is referenced by:  ordtbas  16922  leordtval  16943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-ps 14306  df-tsr 14307
  Copyright terms: Public domain W3C validator