MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtbas2 Unicode version

Theorem ordtbas2 17179
Description: Lemma for ordtbas 17180. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
ordtval.4  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
Assertion
Ref Expression
ordtbas2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Distinct variable groups:    a, b, A    x, a, y, R, b    X, a, b, x, y    B, a, b
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y, a, b)

Proof of Theorem ordtbas2
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3455 . . . . . 6  |-  A  C_  ( A  u.  B
)
2 ssun2 3456 . . . . . . 7  |-  ( A  u.  B )  C_  ( { X }  u.  ( A  u.  B
) )
3 ordtval.1 . . . . . . . . . 10  |-  X  =  dom  R
4 ordtval.2 . . . . . . . . . 10  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
5 ordtval.3 . . . . . . . . . 10  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
63, 4, 5ordtuni 17178 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  =  U. ( { X }  u.  ( A  u.  B
) ) )
7 dmexg 5072 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  dom  R  e.  _V )
83, 7syl5eqel 2473 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  X  e.  _V )
96, 8eqeltrrd 2464 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  U. ( { X }  u.  ( A  u.  B ) )  e. 
_V )
10 uniexb 4694 . . . . . . . 8  |-  ( ( { X }  u.  ( A  u.  B
) )  e.  _V  <->  U. ( { X }  u.  ( A  u.  B
) )  e.  _V )
119, 10sylibr 204 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( { X }  u.  ( A  u.  B ) )  e. 
_V )
12 ssexg 4292 . . . . . . 7  |-  ( ( ( A  u.  B
)  C_  ( { X }  u.  ( A  u.  B )
)  /\  ( { X }  u.  ( A  u.  B )
)  e.  _V )  ->  ( A  u.  B
)  e.  _V )
132, 11, 12sylancr 645 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  e.  _V )
14 ssexg 4292 . . . . . 6  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
151, 13, 14sylancr 645 . . . . 5  |-  ( R  e.  TosetRel  ->  A  e.  _V )
16 ssun2 3456 . . . . . 6  |-  B  C_  ( A  u.  B
)
17 ssexg 4292 . . . . . 6  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1816, 13, 17sylancr 645 . . . . 5  |-  ( R  e.  TosetRel  ->  B  e.  _V )
19 elfiun 7372 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( z  e.  ( fi `  ( A  u.  B ) )  <-> 
( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B )  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
2015, 18, 19syl2anc 643 . . . 4  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  <->  ( z  e.  ( fi `  A
)  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) ) ) )
213, 4ordtbaslem 17176 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  A )
2221, 1syl6eqss 3343 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  ( A  u.  B )
)
23 ssun1 3455 . . . . . . 7  |-  ( A  u.  B )  C_  ( ( A  u.  B )  u.  C
)
2422, 23syl6ss 3305 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  A )  C_  (
( A  u.  B
)  u.  C ) )
2524sseld 3292 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  A
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
26 cnvtsr 14583 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  `' R  e.  TosetRel  )
27 df-rn 4831 . . . . . . . . . . 11  |-  ran  R  =  dom  `' R
28 eqid 2389 . . . . . . . . . . 11  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )
2927, 28ordtbaslem 17176 . . . . . . . . . 10  |-  ( `' R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
3026, 29syl 16 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )  =  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
31 tsrps 14582 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  R  e.  PosetRel )
323psrn 14570 . . . . . . . . . . . . . 14  |-  ( R  e.  PosetRel  ->  X  =  ran  R )
3331, 32syl 16 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  X  =  ran  R )
34 vex 2904 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
35 vex 2904 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
3634, 35brcnv 4997 . . . . . . . . . . . . . . . . 17  |-  ( y `' R x  <->  x R
y )
3736bicomi 194 . . . . . . . . . . . . . . . 16  |-  ( x R y  <->  y `' R x )
3837notbii 288 . . . . . . . . . . . . . . 15  |-  ( -.  x R y  <->  -.  y `' R x )
3938a1i 11 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( -.  x R y  <->  -.  y `' R x ) )
4033, 39rabeqbidv 2896 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  ran  R  |  -.  y `' R x } )
4133, 40mpteq12dv 4230 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
4241rneqd 5039 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) )
435, 42syl5eq 2433 . . . . . . . . . 10  |-  ( R  e.  TosetRel  ->  B  =  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } ) )
4443fveq2d 5674 . . . . . . . . 9  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ( fi `  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } ) ) )
4530, 44, 433eqtr4d 2431 . . . . . . . 8  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  B )
4645, 16syl6eqss 3343 . . . . . . 7  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  ( A  u.  B )
)
4746, 23syl6ss 3305 . . . . . 6  |-  ( R  e.  TosetRel  ->  ( fi `  B )  C_  (
( A  u.  B
)  u.  C ) )
4847sseld 3292 . . . . 5  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  B
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
49 ssun2 3456 . . . . . . . 8  |-  C  C_  ( ( A  u.  B )  u.  C
)
5021, 4syl6eq 2437 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  A )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
5150eleq2d 2456 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) ) )
52 vex 2904 . . . . . . . . . . . . . . 15  |-  m  e. 
_V
53 breq2 4159 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
y R x  <->  y R
a ) )
5453notbid 286 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( -.  y R x  <->  -.  y R a ) )
5554rabbidv 2893 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  { y  e.  X  |  -.  y R x }  =  { y  e.  X  |  -.  y R a } )
5655cbvmptv 4243 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( a  e.  X  |->  { y  e.  X  |  -.  y R a } )
5756elrnmpt 5059 . . . . . . . . . . . . . . 15  |-  ( m  e.  _V  ->  (
m  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
5852, 57ax-mp 8 . . . . . . . . . . . . . 14  |-  ( m  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } )
5951, 58syl6bb 253 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( m  e.  ( fi `  A
)  <->  E. a  e.  X  m  =  { y  e.  X  |  -.  y R a } ) )
6045, 5syl6eq 2437 . . . . . . . . . . . . . . 15  |-  ( R  e.  TosetRel  ->  ( fi `  B )  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
6160eleq2d 2456 . . . . . . . . . . . . . 14  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) ) )
62 vex 2904 . . . . . . . . . . . . . . 15  |-  n  e. 
_V
63 breq1 4158 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  b  ->  (
x R y  <->  b R
y ) )
6463notbid 286 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  b  ->  ( -.  x R y  <->  -.  b R y ) )
6564rabbidv 2893 . . . . . . . . . . . . . . . . 17  |-  ( x  =  b  ->  { y  e.  X  |  -.  x R y }  =  { y  e.  X  |  -.  b R y } )
6665cbvmptv 4243 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( b  e.  X  |->  { y  e.  X  |  -.  b R y } )
6766elrnmpt 5059 . . . . . . . . . . . . . . 15  |-  ( n  e.  _V  ->  (
n  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
6862, 67ax-mp 8 . . . . . . . . . . . . . 14  |-  ( n  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )
6961, 68syl6bb 253 . . . . . . . . . . . . 13  |-  ( R  e.  TosetRel  ->  ( n  e.  ( fi `  B
)  <->  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) )
7059, 69anbi12d 692 . . . . . . . . . . . 12  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  <->  ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } ) ) )
71 reeanv 2820 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  <-> 
( E. a  e.  X  m  =  {
y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  {
y  e.  X  |  -.  b R y } ) )
72 ineq12 3482 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } ) )
73 inrab 3558 . . . . . . . . . . . . . . . 16  |-  ( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }
7472, 73syl6eq 2437 . . . . . . . . . . . . . . 15  |-  ( ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )
7574reximi 2758 . . . . . . . . . . . . . 14  |-  ( E. b  e.  X  ( m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7675reximi 2758 . . . . . . . . . . . . 13  |-  ( E. a  e.  X  E. b  e.  X  (
m  =  { y  e.  X  |  -.  y R a }  /\  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7771, 76sylbir 205 . . . . . . . . . . . 12  |-  ( ( E. a  e.  X  m  =  { y  e.  X  |  -.  y R a }  /\  E. b  e.  X  n  =  { y  e.  X  |  -.  b R y } )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
7870, 77syl6bi 220 . . . . . . . . . . 11  |-  ( R  e.  TosetRel  ->  ( ( m  e.  ( fi `  A )  /\  n  e.  ( fi `  B
) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n )  =  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) )
7978imp 419 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8052inex1 4287 . . . . . . . . . . 11  |-  ( m  i^i  n )  e. 
_V
81 eqid 2389 . . . . . . . . . . . 12  |-  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  =  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8281elrnmpt2g 6123 . . . . . . . . . . 11  |-  ( ( m  i^i  n )  e.  _V  ->  (
( m  i^i  n
)  e.  ran  (
a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
8380, 82ax-mp 8 . . . . . . . . . 10  |-  ( ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  <->  E. a  e.  X  E. b  e.  X  ( m  i^i  n
)  =  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8479, 83sylibr 204 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) )
85 ordtval.4 . . . . . . . . 9  |-  C  =  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )
8684, 85syl6eleqr 2480 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  C
)
8749, 86sseldi 3291 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) )
88 eleq1 2449 . . . . . . 7  |-  ( z  =  ( m  i^i  n )  ->  (
z  e.  ( ( A  u.  B )  u.  C )  <->  ( m  i^i  n )  e.  ( ( A  u.  B
)  u.  C ) ) )
8987, 88syl5ibrcom 214 . . . . . 6  |-  ( ( R  e.  TosetRel  /\  (
m  e.  ( fi
`  A )  /\  n  e.  ( fi `  B ) ) )  ->  ( z  =  ( m  i^i  n
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9089rexlimdvva 2782 . . . . 5  |-  ( R  e.  TosetRel  ->  ( E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n )  ->  z  e.  ( ( A  u.  B
)  u.  C ) ) )
9125, 48, 903jaod 1248 . . . 4  |-  ( R  e.  TosetRel  ->  ( ( z  e.  ( fi `  A )  \/  z  e.  ( fi `  B
)  \/  E. m  e.  ( fi `  A
) E. n  e.  ( fi `  B
) z  =  ( m  i^i  n ) )  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9220, 91sylbid 207 . . 3  |-  ( R  e.  TosetRel  ->  ( z  e.  ( fi `  ( A  u.  B )
)  ->  z  e.  ( ( A  u.  B )  u.  C
) ) )
9392ssrdv 3299 . 2  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  C_  (
( A  u.  B
)  u.  C ) )
94 ssfii 7361 . . . 4  |-  ( ( A  u.  B )  e.  _V  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B )
) )
9513, 94syl 16 . . 3  |-  ( R  e.  TosetRel  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
9695adantr 452 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) ) )
97 simprl 733 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  X )
98 eqidd 2390 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )
9955eqeq2d 2400 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x }  <->  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } ) )
10099rspcev 2997 . . . . . . . . . . . . . 14  |-  ( ( a  e.  X  /\  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R a } )  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
10197, 98, 100syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } )
1028adantr 452 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  X  e.  _V )
103 rabexg 4296 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  y R a }  e.  _V )
104 eqid 2389 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
105104elrnmpt 5059 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  y R a }  e.  _V  ->  ( { y  e.  X  |  -.  y R a }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
)  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
106102, 103, 1053syl 19 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  <->  E. x  e.  X  { y  e.  X  |  -.  y R a }  =  { y  e.  X  |  -.  y R x } ) )
107101, 106mpbird 224 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) )
108107, 4syl6eleqr 2480 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  A )
1091, 108sseldi 3291 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( A  u.  B
) )
11096, 109sseldd 3294 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  y R a }  e.  ( fi `  ( A  u.  B ) ) )
111 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  X )
112 eqidd 2390 . . . . . . . . . . . . . 14  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )
11365eqeq2d 2400 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  ( { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y }  <->  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } ) )
114113rspcev 2997 . . . . . . . . . . . . . 14  |-  ( ( b  e.  X  /\  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  b R y } )  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
115111, 112, 114syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } )
116 rabexg 4296 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  { y  e.  X  |  -.  b R y }  e.  _V )
117 eqid 2389 . . . . . . . . . . . . . . 15  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
118117elrnmpt 5059 . . . . . . . . . . . . . 14  |-  ( { y  e.  X  |  -.  b R y }  e.  _V  ->  ( { y  e.  X  |  -.  b R y }  e.  ran  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
119102, 116, 1183syl 19 . . . . . . . . . . . . 13  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  <->  E. x  e.  X  { y  e.  X  |  -.  b R y }  =  { y  e.  X  |  -.  x R y } ) )
120115, 119mpbird 224 . . . . . . . . . . . 12  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) )
121120, 5syl6eleqr 2480 . . . . . . . . . . 11  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  B )
12216, 121sseldi 3291 . . . . . . . . . 10  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( A  u.  B
) )
12396, 122sseldd 3294 . . . . . . . . 9  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B ) ) )
124 fiin 7364 . . . . . . . . 9  |-  ( ( { y  e.  X  |  -.  y R a }  e.  ( fi
`  ( A  u.  B ) )  /\  { y  e.  X  |  -.  b R y }  e.  ( fi `  ( A  u.  B
) ) )  -> 
( { y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi
`  ( A  u.  B ) ) )
125110, 123, 124syl2anc 643 . . . . . . . 8  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( {
y  e.  X  |  -.  y R a }  i^i  { y  e.  X  |  -.  b R y } )  e.  ( fi `  ( A  u.  B
) ) )
12673, 125syl5eqelr 2474 . . . . . . 7  |-  ( ( R  e.  TosetRel  /\  (
a  e.  X  /\  b  e.  X )
)  ->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi
`  ( A  u.  B ) ) )
127126ralrimivva 2743 . . . . . 6  |-  ( R  e.  TosetRel  ->  A. a  e.  X  A. b  e.  X  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) ) )
12881fmpt2 6359 . . . . . 6  |-  ( A. a  e.  X  A. b  e.  X  {
y  e.  X  | 
( -.  y R a  /\  -.  b R y ) }  e.  ( fi `  ( A  u.  B
) )  <->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
129127, 128sylib 189 . . . . 5  |-  ( R  e.  TosetRel  ->  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B )
) )
130 frn 5539 . . . . 5  |-  ( ( a  e.  X , 
b  e.  X  |->  { y  e.  X  | 
( -.  y R a  /\  -.  b R y ) } ) : ( X  X.  X ) --> ( fi `  ( A  u.  B ) )  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
131129, 130syl 16 . . . 4  |-  ( R  e.  TosetRel  ->  ran  ( a  e.  X ,  b  e.  X  |->  { y  e.  X  |  ( -.  y R a  /\  -.  b R y ) } )  C_  ( fi `  ( A  u.  B ) ) )
13285, 131syl5eqss 3337 . . 3  |-  ( R  e.  TosetRel  ->  C  C_  ( fi `  ( A  u.  B ) ) )
13395, 132unssd 3468 . 2  |-  ( R  e.  TosetRel  ->  ( ( A  u.  B )  u.  C )  C_  ( fi `  ( A  u.  B ) ) )
13493, 133eqssd 3310 1  |-  ( R  e.  TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    \/ w3o 935    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   {crab 2655   _Vcvv 2901    u. cun 3263    i^i cin 3264    C_ wss 3265   {csn 3759   U.cuni 3959   class class class wbr 4155    e. cmpt 4209    X. cxp 4818   `'ccnv 4819   dom cdm 4820   ran crn 4821   -->wf 5392   ` cfv 5396    e. cmpt2 6024   ficfi 7352   PosetRelcps 14553    TosetRel ctsr 14554
This theorem is referenced by:  ordtbas  17180  leordtval  17201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-fin 7051  df-fi 7353  df-ps 14558  df-tsr 14559
  Copyright terms: Public domain W3C validator