MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn1 Unicode version

Theorem ordtopn1 16924
Description: An upward ray  ( P ,  +oo ) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3  |-  X  =  dom  R
Assertion
Ref Expression
ordtopn1  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  e.  (ordTop `  R ) )
Distinct variable groups:    x, P    x, R    x, V    x, X

Proof of Theorem ordtopn1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9  |-  X  =  dom  R
2 eqid 2283 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )
3 eqid 2283 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)
41, 2, 3ordtuni 16920 . . . . . . . 8  |-  ( R  e.  V  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
54adantr 451 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
6 dmexg 4939 . . . . . . . . 9  |-  ( R  e.  V  ->  dom  R  e.  _V )
71, 6syl5eqel 2367 . . . . . . . 8  |-  ( R  e.  V  ->  X  e.  _V )
87adantr 451 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  e.  _V )
95, 8eqeltrrd 2358 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
10 uniexb 4563 . . . . . 6  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  <->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
119, 10sylibr 203 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
12 ssfii 7172 . . . . 5  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1311, 12syl 15 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
14 fibas 16715 . . . . 5  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases
15 bastg 16704 . . . . 5  |-  ( ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases  ->  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1614, 15ax-mp 8 . . . 4  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1713, 16syl6ss 3191 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( topGen `
 ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
181, 2, 3ordtval 16919 . . . 4  |-  ( R  e.  V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1918adantr 451 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  (ordTop `  R )  =  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
2017, 19sseqtr4d 3215 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  (ordTop `  R ) )
21 ssun2 3339 . . 3  |-  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )  C_  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
22 ssun1 3338 . . . 4  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )  C_  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )
23 simpr 447 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  P  e.  X )
24 eqidd 2284 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R P } )
25 breq2 4027 . . . . . . . . . 10  |-  ( y  =  P  ->  (
x R y  <->  x R P ) )
2625notbid 285 . . . . . . . . 9  |-  ( y  =  P  ->  ( -.  x R y  <->  -.  x R P ) )
2726rabbidv 2780 . . . . . . . 8  |-  ( y  =  P  ->  { x  e.  X  |  -.  x R y }  =  { x  e.  X  |  -.  x R P } )
2827eqeq2d 2294 . . . . . . 7  |-  ( y  =  P  ->  ( { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R y }  <->  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R P } ) )
2928rspcev 2884 . . . . . 6  |-  ( ( P  e.  X  /\  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R P } )  ->  E. y  e.  X  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R y } )
3023, 24, 29syl2anc 642 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  E. y  e.  X  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R y } )
31 rabexg 4164 . . . . . 6  |-  ( X  e.  _V  ->  { x  e.  X  |  -.  x R P }  e.  _V )
32 eqid 2283 . . . . . . 7  |-  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  =  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )
3332elrnmpt 4926 . . . . . 6  |-  ( { x  e.  X  |  -.  x R P }  e.  _V  ->  ( {
x  e.  X  |  -.  x R P }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  <->  E. y  e.  X  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R y } ) )
348, 31, 333syl 18 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { x  e.  X  |  -.  x R P }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  <->  E. y  e.  X  { x  e.  X  |  -.  x R P }  =  { x  e.  X  |  -.  x R y } ) )
3530, 34mpbird 223 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  e.  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } ) )
3622, 35sseldi 3178 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  e.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
3721, 36sseldi 3178 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  e.  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
3820, 37sseldd 3181 1  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  x R P }  e.  (ordTop `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   _Vcvv 2788    u. cun 3150    C_ wss 3152   {csn 3640   U.cuni 3827   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ran crn 4690   ` cfv 5255   ficfi 7164   topGenctg 13342  ordTopcordt 13398   TopBasesctb 16635
This theorem is referenced by:  ordtopn3  16926  ordtcld1  16927  ordtrest  16932  ordtrest2lem  16933  ordthauslem  17111  ordthmeolem  17492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-topgen 13344  df-ordt 13402  df-bases 16638
  Copyright terms: Public domain W3C validator