MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtopn2 Structured version   Unicode version

Theorem ordtopn2 17290
Description: A downward ray  (  -oo ,  P ) is open. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3  |-  X  =  dom  R
Assertion
Ref Expression
ordtopn2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  (ordTop `  R ) )
Distinct variable groups:    x, P    x, R    x, V    x, X

Proof of Theorem ordtopn2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordttopon.3 . . . . . . . . 9  |-  X  =  dom  R
2 eqid 2442 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  x R y } )
3 eqid 2442 . . . . . . . . 9  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)  =  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)
41, 2, 3ordtuni 17285 . . . . . . . 8  |-  ( R  e.  V  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
54adantr 453 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  =  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
6 dmexg 5159 . . . . . . . . 9  |-  ( R  e.  V  ->  dom  R  e.  _V )
71, 6syl5eqel 2526 . . . . . . . 8  |-  ( R  e.  V  ->  X  e.  _V )
87adantr 453 . . . . . . 7  |-  ( ( R  e.  V  /\  P  e.  X )  ->  X  e.  _V )
95, 8eqeltrrd 2517 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
10 uniexb 4781 . . . . . 6  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  <->  U. ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
119, 10sylibr 205 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V )
12 ssfii 7453 . . . . 5  |-  ( ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  e.  _V  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1311, 12syl 16 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
14 fibas 17073 . . . . 5  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases
15 bastg 17062 . . . . 5  |-  ( ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  e.  TopBases  ->  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1614, 15ax-mp 5 . . . 4  |-  ( fi
`  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )  C_  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) )
1713, 16syl6ss 3346 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  ( topGen `
 ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
181, 2, 3ordtval 17284 . . . 4  |-  ( R  e.  V  ->  (ordTop `  R )  =  (
topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
1918adantr 453 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  (ordTop `  R )  =  ( topGen `  ( fi `  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) ) ) )
2017, 19sseqtr4d 3371 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )  C_  (ordTop `  R ) )
21 ssun2 3497 . . 3  |-  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )  C_  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
22 ssun2 3497 . . . 4  |-  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
)  C_  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) )
23 simpr 449 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  P  e.  X )
24 eqidd 2443 . . . . . 6  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } )
25 breq1 4240 . . . . . . . . . 10  |-  ( y  =  P  ->  (
y R x  <->  P R x ) )
2625notbid 287 . . . . . . . . 9  |-  ( y  =  P  ->  ( -.  y R x  <->  -.  P R x ) )
2726rabbidv 2954 . . . . . . . 8  |-  ( y  =  P  ->  { x  e.  X  |  -.  y R x }  =  { x  e.  X  |  -.  P R x } )
2827eqeq2d 2453 . . . . . . 7  |-  ( y  =  P  ->  ( { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x }  <->  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } ) )
2928rspcev 3058 . . . . . 6  |-  ( ( P  e.  X  /\  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  P R x } )  ->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } )
3023, 24, 29syl2anc 644 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } )
31 rabexg 4382 . . . . . 6  |-  ( X  e.  _V  ->  { x  e.  X  |  -.  P R x }  e.  _V )
32 eqid 2442 . . . . . . 7  |-  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  =  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )
3332elrnmpt 5146 . . . . . 6  |-  ( { x  e.  X  |  -.  P R x }  e.  _V  ->  ( {
x  e.  X  |  -.  P R x }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  <->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } ) )
348, 31, 333syl 19 . . . . 5  |-  ( ( R  e.  V  /\  P  e.  X )  ->  ( { x  e.  X  |  -.  P R x }  e.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } )  <->  E. y  e.  X  { x  e.  X  |  -.  P R x }  =  { x  e.  X  |  -.  y R x } ) )
3530, 34mpbird 225 . . . 4  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ran  (
y  e.  X  |->  { x  e.  X  |  -.  y R x }
) )
3622, 35sseldi 3332 . . 3  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) )
3721, 36sseldi 3332 . 2  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  ( { X }  u.  ( ran  ( y  e.  X  |->  { x  e.  X  |  -.  x R y } )  u.  ran  ( y  e.  X  |->  { x  e.  X  |  -.  y R x } ) ) ) )
3820, 37sseldd 3335 1  |-  ( ( R  e.  V  /\  P  e.  X )  ->  { x  e.  X  |  -.  P R x }  e.  (ordTop `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   E.wrex 2712   {crab 2715   _Vcvv 2962    u. cun 3304    C_ wss 3306   {csn 3838   U.cuni 4039   class class class wbr 4237    e. cmpt 4291   dom cdm 4907   ran crn 4908   ` cfv 5483   ficfi 7444   topGenctg 13696  ordTopcordt 13752   TopBasesctb 16993
This theorem is referenced by:  ordtopn3  17291  ordtcld2  17293  ordtrest  17297  ordthauslem  17478  ordthmeolem  17864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-fin 7142  df-fi 7445  df-topgen 13698  df-ordt 13756  df-bases 16996
  Copyright terms: Public domain W3C validator