MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr2 Structured version   Unicode version

Theorem ordtr2 4617
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtr2  |-  ( ( Ord  A  /\  Ord  C )  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  C ) )

Proof of Theorem ordtr2
StepHypRef Expression
1 ordelord 4595 . . . . . . . 8  |-  ( ( Ord  C  /\  B  e.  C )  ->  Ord  B )
21ex 424 . . . . . . 7  |-  ( Ord 
C  ->  ( B  e.  C  ->  Ord  B
) )
32ancld 537 . . . . . 6  |-  ( Ord 
C  ->  ( B  e.  C  ->  ( B  e.  C  /\  Ord  B ) ) )
43anc2li 541 . . . . 5  |-  ( Ord 
C  ->  ( B  e.  C  ->  ( Ord 
C  /\  ( B  e.  C  /\  Ord  B
) ) ) )
5 ordelpss 4601 . . . . . . . . . . 11  |-  ( ( Ord  B  /\  Ord  C )  ->  ( B  e.  C  <->  B  C.  C ) )
65ancoms 440 . . . . . . . . . 10  |-  ( ( Ord  C  /\  Ord  B )  ->  ( B  e.  C  <->  B  C.  C ) )
7 sspsstr 3444 . . . . . . . . . . 11  |-  ( ( A  C_  B  /\  B  C.  C )  ->  A  C.  C )
87expcom 425 . . . . . . . . . 10  |-  ( B 
C.  C  ->  ( A  C_  B  ->  A  C.  C ) )
96, 8syl6bi 220 . . . . . . . . 9  |-  ( ( Ord  C  /\  Ord  B )  ->  ( B  e.  C  ->  ( A 
C_  B  ->  A  C.  C ) ) )
109ex 424 . . . . . . . 8  |-  ( Ord 
C  ->  ( Ord  B  ->  ( B  e.  C  ->  ( A  C_  B  ->  A  C.  C ) ) ) )
1110com23 74 . . . . . . 7  |-  ( Ord 
C  ->  ( B  e.  C  ->  ( Ord 
B  ->  ( A  C_  B  ->  A  C.  C ) ) ) )
1211imp32 423 . . . . . 6  |-  ( ( Ord  C  /\  ( B  e.  C  /\  Ord  B ) )  -> 
( A  C_  B  ->  A  C.  C ) )
1312com12 29 . . . . 5  |-  ( A 
C_  B  ->  (
( Ord  C  /\  ( B  e.  C  /\  Ord  B ) )  ->  A  C.  C
) )
144, 13syl9 68 . . . 4  |-  ( Ord 
C  ->  ( A  C_  B  ->  ( B  e.  C  ->  A  C.  C ) ) )
1514imp3a 421 . . 3  |-  ( Ord 
C  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  C.  C ) )
1615adantl 453 . 2  |-  ( ( Ord  A  /\  Ord  C )  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  C.  C ) )
17 ordelpss 4601 . 2  |-  ( ( Ord  A  /\  Ord  C )  ->  ( A  e.  C  <->  A  C.  C ) )
1816, 17sylibrd 226 1  |-  ( ( Ord  A  /\  Ord  C )  ->  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725    C_ wss 3312    C. wpss 3313   Ord word 4572
This theorem is referenced by:  ordtr3  4618  ontr2  4620  ordelinel  4672  smogt  6621  smorndom  6622  nnarcl  6851  nnawordex  6872  coftr  8143  nodenselem5  25605  hfuni  26090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576
  Copyright terms: Public domain W3C validator