MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3 Unicode version

Theorem ordtr3 4568
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
ordtr3  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  e.  B  ->  ( A  e.  C  \/  C  e.  B ) ) )

Proof of Theorem ordtr3
StepHypRef Expression
1 simplr 732 . . . . 5  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  Ord  C )
2 ordelord 4545 . . . . . 6  |-  ( ( Ord  B  /\  A  e.  B )  ->  Ord  A )
32adantlr 696 . . . . 5  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  Ord  A )
4 ordtri1 4556 . . . . 5  |-  ( ( Ord  C  /\  Ord  A )  ->  ( C  C_  A  <->  -.  A  e.  C ) )
51, 3, 4syl2anc 643 . . . 4  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  ( C  C_  A  <->  -.  A  e.  C ) )
6 ordtr2 4567 . . . . . . 7  |-  ( ( Ord  C  /\  Ord  B )  ->  ( ( C  C_  A  /\  A  e.  B )  ->  C  e.  B ) )
76ancoms 440 . . . . . 6  |-  ( ( Ord  B  /\  Ord  C )  ->  ( ( C  C_  A  /\  A  e.  B )  ->  C  e.  B ) )
87ancomsd 441 . . . . 5  |-  ( ( Ord  B  /\  Ord  C )  ->  ( ( A  e.  B  /\  C  C_  A )  ->  C  e.  B )
)
98expdimp 427 . . . 4  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  ( C  C_  A  ->  C  e.  B ) )
105, 9sylbird 227 . . 3  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  ( -.  A  e.  C  ->  C  e.  B ) )
1110orrd 368 . 2  |-  ( ( ( Ord  B  /\  Ord  C )  /\  A  e.  B )  ->  ( A  e.  C  \/  C  e.  B )
)
1211ex 424 1  |-  ( ( Ord  B  /\  Ord  C )  ->  ( A  e.  B  ->  ( A  e.  C  \/  C  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1717    C_ wss 3264   Ord word 4522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-tr 4245  df-eprel 4436  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526
  Copyright terms: Public domain W3C validator