MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest Unicode version

Theorem ordtrest 16932
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
ordtrest  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  C_  ( (ordTop `  R )t  A ) )

Proof of Theorem ordtrest
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inex1g 4157 . . . 4  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  _V )
21adantr 451 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( R  i^i  ( A  X.  A ) )  e. 
_V )
3 eqid 2283 . . . 4  |-  dom  ( R  i^i  ( A  X.  A ) )  =  dom  ( R  i^i  ( A  X.  A
) )
4 eqid 2283 . . . 4  |-  ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )
5 eqid 2283 . . . 4  |-  ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )
63, 4, 5ordtval 16919 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )  e.  _V  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  =  ( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) ) )
72, 6syl 15 . 2  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  =  ( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) ) )
8 ordttop 16930 . . . 4  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  Top )
9 resttop 16891 . . . 4  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V )  ->  (
(ordTop `  R )t  A
)  e.  Top )
108, 9sylan 457 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
(ordTop `  R )t  A
)  e.  Top )
11 eqid 2283 . . . . . . . 8  |-  dom  R  =  dom  R
1211psssdm2 14324 . . . . . . 7  |-  ( R  e.  PosetRel  ->  dom  ( R  i^i  ( A  X.  A
) )  =  ( dom  R  i^i  A
) )
1312adantr 451 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A ) )
148adantr 451 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  R )  e.  Top )
15 simpr 447 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  A  e.  V )
1611ordttopon 16923 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
1716adantr 451 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
18 toponmax 16666 . . . . . . . 8  |-  ( (ordTop `  R )  e.  (TopOn `  dom  R )  ->  dom  R  e.  (ordTop `  R ) )
1917, 18syl 15 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  R  e.  (ordTop `  R
) )
20 elrestr 13333 . . . . . . 7  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  dom  R  e.  (ordTop `  R )
)  ->  ( dom  R  i^i  A )  e.  ( (ordTop `  R
)t 
A ) )
2114, 15, 19, 20syl3anc 1182 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( dom  R  i^i  A )  e.  ( (ordTop `  R )t  A ) )
2213, 21eqeltrd 2357 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  ( R  i^i  ( A  X.  A ) )  e.  ( (ordTop `  R )t  A ) )
2322snssd 3760 . . . 4  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { dom  ( R  i^i  ( A  X.  A ) ) }  C_  ( (ordTop `  R )t  A ) )
24 rabeq 2782 . . . . . . . . 9  |-  ( dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x }  =  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
2513, 24syl 15 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x }  =  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
2613, 25mpteq12dv 4098 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) )
2726rneqd 4906 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ran  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) )
28 inrab2 3441 . . . . . . . . . 10  |-  ( { y  e.  dom  R  |  -.  y R x }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  y R x }
29 inss2 3390 . . . . . . . . . . . . . 14  |-  ( dom 
R  i^i  A )  C_  A
30 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  y  e.  ( dom  R  i^i  A ) )
3129, 30sseldi 3178 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  y  e.  A )
32 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  x  e.  ( dom  R  i^i  A
) )
3329, 32sseldi 3178 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  x  e.  A )
3433adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  x  e.  A )
35 brinxp 4752 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
3631, 34, 35syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  (
y R x  <->  y ( R  i^i  ( A  X.  A ) ) x ) )
3736notbid 285 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  ( -.  y R x  <->  -.  y
( R  i^i  ( A  X.  A ) ) x ) )
3837rabbidva 2779 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  y R x }  =  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )
3928, 38syl5eq 2327 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )
4014adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  (ordTop `  R
)  e.  Top )
4115adantr 451 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  A  e.  V )
42 simpl 443 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  R  e. 
PosetRel )
43 inss1 3389 . . . . . . . . . . . 12  |-  ( dom 
R  i^i  A )  C_ 
dom  R
4443sseli 3176 . . . . . . . . . . 11  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  dom  R )
4511ordtopn1 16924 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R ) )
4642, 44, 45syl2an 463 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R ) )
47 elrestr 13333 . . . . . . . . . 10  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R )
)  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
4840, 41, 46, 47syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
4939, 48eqeltrrd 2358 . . . . . . . 8  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x }  e.  ( (ordTop `  R )t  A
) )
50 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)  =  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
5149, 50fmptd 5684 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A ) )
52 frn 5395 . . . . . . 7  |-  ( ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
5351, 52syl 15 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
5427, 53eqsstrd 3212 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
55 rabeq 2782 . . . . . . . . 9  |-  ( dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y }  =  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
5613, 55syl 15 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y }  =  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
5713, 56mpteq12dv 4098 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) )
5857rneqd 4906 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ran  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) )
59 inrab2 3441 . . . . . . . . . 10  |-  ( { y  e.  dom  R  |  -.  x R y }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  x R y }
60 brinxp 4752 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
6134, 31, 60syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  (
x R y  <->  x ( R  i^i  ( A  X.  A ) ) y ) )
6261notbid 285 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  ( -.  x R y  <->  -.  x
( R  i^i  ( A  X.  A ) ) y ) )
6362rabbidva 2779 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  x R y }  =  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )
6459, 63syl5eq 2327 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  x R y }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )
6511ordtopn2 16925 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R ) )
6642, 44, 65syl2an 463 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R ) )
67 elrestr 13333 . . . . . . . . . 10  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R
) )  ->  ( { y  e.  dom  R  |  -.  x R y }  i^i  A
)  e.  ( (ordTop `  R )t  A ) )
6840, 41, 66, 67syl3anc 1182 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  x R y }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
6964, 68eqeltrrd 2358 . . . . . . . 8  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y }  e.  ( (ordTop `  R )t  A
) )
70 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )  =  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
7169, 70fmptd 5684 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A ) )
72 frn 5395 . . . . . . 7  |-  ( ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7371, 72syl 15 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7458, 73eqsstrd 3212 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7554, 74unssd 3351 . . . 4  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u. 
ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) )  C_  ( (ordTop `  R )t  A
) )
7623, 75unssd 3351 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) )  C_  ( (ordTop `  R )t  A ) )
77 tgfiss 16729 . . 3  |-  ( ( ( (ordTop `  R
)t 
A )  e.  Top  /\  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) )  C_  ( (ordTop `  R )t  A ) )  -> 
( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) )  C_  ( (ordTop `  R )t  A
) )
7810, 76, 77syl2anc 642 . 2  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( topGen `
 ( fi `  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) )  C_  ( (ordTop `  R )t  A
) )
797, 78eqsstrd 3212 1  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  C_  ( (ordTop `  R )t  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   ficfi 7164   ↾t crest 13325   topGenctg 13342  ordTopcordt 13398   PosetRelcps 14301   Topctop 16631  TopOnctopon 16632
This theorem is referenced by:  ordtrest2  16934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-ordt 13402  df-ps 14306  df-top 16636  df-bases 16638  df-topon 16639
  Copyright terms: Public domain W3C validator