MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest Unicode version

Theorem ordtrest 17188
Description: The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
ordtrest  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  C_  ( (ordTop `  R )t  A ) )

Proof of Theorem ordtrest
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inex1g 4287 . . . 4  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  _V )
21adantr 452 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( R  i^i  ( A  X.  A ) )  e. 
_V )
3 eqid 2387 . . . 4  |-  dom  ( R  i^i  ( A  X.  A ) )  =  dom  ( R  i^i  ( A  X.  A
) )
4 eqid 2387 . . . 4  |-  ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )
5 eqid 2387 . . . 4  |-  ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )
63, 4, 5ordtval 17175 . . 3  |-  ( ( R  i^i  ( A  X.  A ) )  e.  _V  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  =  ( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) ) )
72, 6syl 16 . 2  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  =  ( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) ) )
8 ordttop 17186 . . . 4  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  Top )
9 resttop 17146 . . . 4  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V )  ->  (
(ordTop `  R )t  A
)  e.  Top )
108, 9sylan 458 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
(ordTop `  R )t  A
)  e.  Top )
11 eqid 2387 . . . . . . . 8  |-  dom  R  =  dom  R
1211psssdm2 14574 . . . . . . 7  |-  ( R  e.  PosetRel  ->  dom  ( R  i^i  ( A  X.  A
) )  =  ( dom  R  i^i  A
) )
1312adantr 452 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A ) )
148adantr 452 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  R )  e.  Top )
15 simpr 448 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  A  e.  V )
1611ordttopon 17179 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
1716adantr 452 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  R )  e.  (TopOn `  dom  R ) )
18 toponmax 16916 . . . . . . . 8  |-  ( (ordTop `  R )  e.  (TopOn `  dom  R )  ->  dom  R  e.  (ordTop `  R ) )
1917, 18syl 16 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  R  e.  (ordTop `  R
) )
20 elrestr 13583 . . . . . . 7  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  dom  R  e.  (ordTop `  R )
)  ->  ( dom  R  i^i  A )  e.  ( (ordTop `  R
)t 
A ) )
2114, 15, 19, 20syl3anc 1184 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( dom  R  i^i  A )  e.  ( (ordTop `  R )t  A ) )
2213, 21eqeltrd 2461 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  dom  ( R  i^i  ( A  X.  A ) )  e.  ( (ordTop `  R )t  A ) )
2322snssd 3886 . . . 4  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { dom  ( R  i^i  ( A  X.  A ) ) }  C_  ( (ordTop `  R )t  A ) )
24 rabeq 2893 . . . . . . . . 9  |-  ( dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x }  =  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
2513, 24syl 16 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x }  =  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
2613, 25mpteq12dv 4228 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) )
2726rneqd 5037 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  =  ran  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) )
28 inrab2 3557 . . . . . . . . . 10  |-  ( { y  e.  dom  R  |  -.  y R x }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  y R x }
29 inss2 3505 . . . . . . . . . . . . . 14  |-  ( dom 
R  i^i  A )  C_  A
30 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  y  e.  ( dom  R  i^i  A ) )
3129, 30sseldi 3289 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  y  e.  A )
32 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  x  e.  ( dom  R  i^i  A
) )
3329, 32sseldi 3289 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  x  e.  A )
3433adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  x  e.  A )
35 brinxp 4880 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
3631, 34, 35syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  (
y R x  <->  y ( R  i^i  ( A  X.  A ) ) x ) )
3736notbid 286 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  ( -.  y R x  <->  -.  y
( R  i^i  ( A  X.  A ) ) x ) )
3837rabbidva 2890 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  y R x }  =  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )
3928, 38syl5eq 2431 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )
4014adantr 452 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  (ordTop `  R
)  e.  Top )
4115adantr 452 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  A  e.  V )
42 simpl 444 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  R  e. 
PosetRel )
43 inss1 3504 . . . . . . . . . . . 12  |-  ( dom 
R  i^i  A )  C_ 
dom  R
4443sseli 3287 . . . . . . . . . . 11  |-  ( x  e.  ( dom  R  i^i  A )  ->  x  e.  dom  R )
4511ordtopn1 17180 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R ) )
4642, 44, 45syl2an 464 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R ) )
47 elrestr 13583 . . . . . . . . . 10  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  { y  e.  dom  R  |  -.  y R x }  e.  (ordTop `  R )
)  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
4840, 41, 46, 47syl3anc 1184 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  y R x }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
4939, 48eqeltrrd 2462 . . . . . . . 8  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  y
( R  i^i  ( A  X.  A ) ) x }  e.  ( (ordTop `  R )t  A
) )
50 eqid 2387 . . . . . . . 8  |-  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)  =  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  y ( R  i^i  ( A  X.  A
) ) x }
)
5149, 50fmptd 5832 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A ) )
52 frn 5537 . . . . . . 7  |-  ( ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
5351, 52syl 16 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  y
( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
5427, 53eqsstrd 3325 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  C_  ( (ordTop `  R )t  A
) )
55 rabeq 2893 . . . . . . . . 9  |-  ( dom  ( R  i^i  ( A  X.  A ) )  =  ( dom  R  i^i  A )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y }  =  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
5613, 55syl 16 . . . . . . . 8  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y }  =  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
5713, 56mpteq12dv 4228 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) )
5857rneqd 5037 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  =  ran  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) )
59 inrab2 3557 . . . . . . . . . 10  |-  ( { y  e.  dom  R  |  -.  x R y }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  x R y }
60 brinxp 4880 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
6134, 31, 60syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  (
x R y  <->  x ( R  i^i  ( A  X.  A ) ) y ) )
6261notbid 286 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  PosetRel 
/\  A  e.  V
)  /\  x  e.  ( dom  R  i^i  A
) )  /\  y  e.  ( dom  R  i^i  A ) )  ->  ( -.  x R y  <->  -.  x
( R  i^i  ( A  X.  A ) ) y ) )
6362rabbidva 2890 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  x R y }  =  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )
6459, 63syl5eq 2431 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  x R y }  i^i  A )  =  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )
6511ordtopn2 17181 . . . . . . . . . . 11  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R )  ->  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R ) )
6642, 44, 65syl2an 464 . . . . . . . . . 10  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R ) )
67 elrestr 13583 . . . . . . . . . 10  |-  ( ( (ordTop `  R )  e.  Top  /\  A  e.  V  /\  { y  e.  dom  R  |  -.  x R y }  e.  (ordTop `  R
) )  ->  ( { y  e.  dom  R  |  -.  x R y }  i^i  A
)  e.  ( (ordTop `  R )t  A ) )
6840, 41, 66, 67syl3anc 1184 . . . . . . . . 9  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  ( {
y  e.  dom  R  |  -.  x R y }  i^i  A )  e.  ( (ordTop `  R )t  A ) )
6964, 68eqeltrrd 2462 . . . . . . . 8  |-  ( ( ( R  e.  PosetRel  /\  A  e.  V )  /\  x  e.  ( dom  R  i^i  A ) )  ->  { y  e.  ( dom  R  i^i  A )  |  -.  x
( R  i^i  ( A  X.  A ) ) y }  e.  ( (ordTop `  R )t  A
) )
70 eqid 2387 . . . . . . . 8  |-  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )  =  ( x  e.  ( dom  R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A )  |  -.  x ( R  i^i  ( A  X.  A
) ) y } )
7169, 70fmptd 5832 . . . . . . 7  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (
x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A ) )
72 frn 5537 . . . . . . 7  |-  ( ( x  e.  ( dom 
R  i^i  A )  |->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } ) : ( dom  R  i^i  A ) --> ( (ordTop `  R )t  A )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7371, 72syl 16 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  ( dom  R  i^i  A ) 
|->  { y  e.  ( dom  R  i^i  A
)  |  -.  x
( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7458, 73eqsstrd 3325 . . . . 5  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } )  C_  ( (ordTop `  R )t  A
) )
7554, 74unssd 3466 . . . 4  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u. 
ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) )  C_  ( (ordTop `  R )t  A
) )
7623, 75unssd 3466 . . 3  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( { dom  ( R  i^i  ( A  X.  A
) ) }  u.  ( ran  ( x  e. 
dom  ( R  i^i  ( A  X.  A
) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) )  C_  ( (ordTop `  R )t  A ) )
77 tgfiss 16979 . . 3  |-  ( ( ( (ordTop `  R
)t 
A )  e.  Top  /\  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) )  C_  ( (ordTop `  R )t  A ) )  -> 
( topGen `  ( fi `  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) )  C_  ( (ordTop `  R )t  A
) )
7810, 76, 77syl2anc 643 . 2  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  ( topGen `
 ( fi `  ( { dom  ( R  i^i  ( A  X.  A ) ) }  u.  ( ran  (
x  e.  dom  ( R  i^i  ( A  X.  A ) )  |->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  y ( R  i^i  ( A  X.  A ) ) x } )  u.  ran  ( x  e.  dom  ( R  i^i  ( A  X.  A ) ) 
|->  { y  e.  dom  ( R  i^i  ( A  X.  A ) )  |  -.  x ( R  i^i  ( A  X.  A ) ) y } ) ) ) ) )  C_  ( (ordTop `  R )t  A
) )
797, 78eqsstrd 3325 1  |-  ( ( R  e.  PosetRel  /\  A  e.  V )  ->  (ordTop `  ( R  i^i  ( A  X.  A ) ) )  C_  ( (ordTop `  R )t  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2653   _Vcvv 2899    u. cun 3261    i^i cin 3262    C_ wss 3263   {csn 3757   class class class wbr 4153    e. cmpt 4207    X. cxp 4816   dom cdm 4818   ran crn 4819   -->wf 5390   ` cfv 5394  (class class class)co 6020   ficfi 7350   ↾t crest 13575   topGenctg 13592  ordTopcordt 13648   PosetRelcps 14551   Topctop 16881  TopOnctopon 16882
This theorem is referenced by:  ordtrest2  17190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-fin 7049  df-fi 7351  df-rest 13577  df-topgen 13594  df-ordt 13652  df-ps 14556  df-top 16886  df-bases 16888  df-topon 16889
  Copyright terms: Public domain W3C validator