MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2 Structured version   Unicode version

Theorem ordtri2 4608
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordtri2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )

Proof of Theorem ordtri2
StepHypRef Expression
1 ordsseleq 4602 . . . . 5  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  C_  A  <->  ( B  e.  A  \/  B  =  A ) ) )
2 eqcom 2437 . . . . . . 7  |-  ( B  =  A  <->  A  =  B )
32orbi2i 506 . . . . . 6  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( B  e.  A  \/  A  =  B )
)
4 orcom 377 . . . . . 6  |-  ( ( B  e.  A  \/  A  =  B )  <->  ( A  =  B  \/  B  e.  A )
)
53, 4bitri 241 . . . . 5  |-  ( ( B  e.  A  \/  B  =  A )  <->  ( A  =  B  \/  B  e.  A )
)
61, 5syl6bb 253 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  C_  A  <->  ( A  =  B  \/  B  e.  A ) ) )
7 ordtri1 4606 . . . 4  |-  ( ( Ord  B  /\  Ord  A )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
86, 7bitr3d 247 . . 3  |-  ( ( Ord  B  /\  Ord  A )  ->  ( ( A  =  B  \/  B  e.  A )  <->  -.  A  e.  B ) )
98ancoms 440 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  ( ( A  =  B  \/  B  e.  A )  <->  -.  A  e.  B ) )
109con2bid 320 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3312   Ord word 4572
This theorem is referenced by:  ord0eln0  4627  oaord  6782  omord2  6802  oeord  6823  nnaord  6854  nnmord  6867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-tr 4295  df-eprel 4486  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576
  Copyright terms: Public domain W3C validator