MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtuni Structured version   Unicode version

Theorem ordtuni 17254
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1  |-  X  =  dom  R
ordtval.2  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
ordtval.3  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
Assertion
Ref Expression
ordtuni  |-  ( R  e.  V  ->  X  =  U. ( { X }  u.  ( A  u.  B ) ) )
Distinct variable groups:    x, y, R    x, X, y    x, V
Allowed substitution hints:    A( x, y)    B( x, y)    V( y)

Proof of Theorem ordtuni
StepHypRef Expression
1 ordtval.1 . . . . . 6  |-  X  =  dom  R
2 dmexg 5130 . . . . . 6  |-  ( R  e.  V  ->  dom  R  e.  _V )
31, 2syl5eqel 2520 . . . . 5  |-  ( R  e.  V  ->  X  e.  _V )
4 unisng 4032 . . . . 5  |-  ( X  e.  _V  ->  U. { X }  =  X
)
53, 4syl 16 . . . 4  |-  ( R  e.  V  ->  U. { X }  =  X
)
65uneq1d 3500 . . 3  |-  ( R  e.  V  ->  ( U. { X }  u.  U. ( A  u.  B
) )  =  ( X  u.  U. ( A  u.  B )
) )
7 ordtval.2 . . . . . . 7  |-  A  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
8 ssrab2 3428 . . . . . . . . . 10  |-  { y  e.  X  |  -.  y R x }  C_  X
93adantr 452 . . . . . . . . . . 11  |-  ( ( R  e.  V  /\  x  e.  X )  ->  X  e.  _V )
10 elpw2g 4363 . . . . . . . . . . 11  |-  ( X  e.  _V  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X ) )
119, 10syl 16 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  x  e.  X )  ->  ( { y  e.  X  |  -.  y R x }  e.  ~P X  <->  { y  e.  X  |  -.  y R x }  C_  X )
)
128, 11mpbiri 225 . . . . . . . . 9  |-  ( ( R  e.  V  /\  x  e.  X )  ->  { y  e.  X  |  -.  y R x }  e.  ~P X
)
13 eqid 2436 . . . . . . . . 9  |-  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )
1412, 13fmptd 5893 . . . . . . . 8  |-  ( R  e.  V  ->  (
x  e.  X  |->  { y  e.  X  |  -.  y R x }
) : X --> ~P X
)
15 frn 5597 . . . . . . . 8  |-  ( ( x  e.  X  |->  { y  e.  X  |  -.  y R x }
) : X --> ~P X  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } ) 
C_  ~P X )
1614, 15syl 16 . . . . . . 7  |-  ( R  e.  V  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  y R x } )  C_  ~P X )
177, 16syl5eqss 3392 . . . . . 6  |-  ( R  e.  V  ->  A  C_ 
~P X )
18 ordtval.3 . . . . . . 7  |-  B  =  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
19 ssrab2 3428 . . . . . . . . . 10  |-  { y  e.  X  |  -.  x R y }  C_  X
20 elpw2g 4363 . . . . . . . . . . 11  |-  ( X  e.  _V  ->  ( { y  e.  X  |  -.  x R y }  e.  ~P X  <->  { y  e.  X  |  -.  x R y } 
C_  X ) )
219, 20syl 16 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  x  e.  X )  ->  ( { y  e.  X  |  -.  x R y }  e.  ~P X  <->  { y  e.  X  |  -.  x R y }  C_  X )
)
2219, 21mpbiri 225 . . . . . . . . 9  |-  ( ( R  e.  V  /\  x  e.  X )  ->  { y  e.  X  |  -.  x R y }  e.  ~P X
)
23 eqid 2436 . . . . . . . . 9  |-  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  =  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )
2422, 23fmptd 5893 . . . . . . . 8  |-  ( R  e.  V  ->  (
x  e.  X  |->  { y  e.  X  |  -.  x R y } ) : X --> ~P X
)
25 frn 5597 . . . . . . . 8  |-  ( ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) : X --> ~P X  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } ) 
C_  ~P X )
2624, 25syl 16 . . . . . . 7  |-  ( R  e.  V  ->  ran  ( x  e.  X  |->  { y  e.  X  |  -.  x R y } )  C_  ~P X )
2718, 26syl5eqss 3392 . . . . . 6  |-  ( R  e.  V  ->  B  C_ 
~P X )
2817, 27unssd 3523 . . . . 5  |-  ( R  e.  V  ->  ( A  u.  B )  C_ 
~P X )
29 sspwuni 4176 . . . . 5  |-  ( ( A  u.  B ) 
C_  ~P X  <->  U. ( A  u.  B )  C_  X )
3028, 29sylib 189 . . . 4  |-  ( R  e.  V  ->  U. ( A  u.  B )  C_  X )
31 ssequn2 3520 . . . 4  |-  ( U. ( A  u.  B
)  C_  X  <->  ( X  u.  U. ( A  u.  B ) )  =  X )
3230, 31sylib 189 . . 3  |-  ( R  e.  V  ->  ( X  u.  U. ( A  u.  B )
)  =  X )
336, 32eqtr2d 2469 . 2  |-  ( R  e.  V  ->  X  =  ( U. { X }  u.  U. ( A  u.  B )
) )
34 uniun 4034 . 2  |-  U. ( { X }  u.  ( A  u.  B )
)  =  ( U. { X }  u.  U. ( A  u.  B
) )
3533, 34syl6eqr 2486 1  |-  ( R  e.  V  ->  X  =  U. ( { X }  u.  ( A  u.  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956    u. cun 3318    C_ wss 3320   ~Pcpw 3799   {csn 3814   U.cuni 4015   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   ran crn 4879   -->wf 5450
This theorem is referenced by:  ordtbas2  17255  ordtbas  17256  ordttopon  17257  ordtopn1  17258  ordtopn2  17259  ordtrest2  17268  ordthmeolem  17833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462
  Copyright terms: Public domain W3C validator