MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem10 Unicode version

Theorem ordtypelem10 7460
Description: Lemma for ordtype 7465. Using ax-rep 4288, exclude the possibility that  O is a proper class and does not enumerate all of 
A. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem10  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  A
) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem10
Dummy variables  b 
c  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . 3  |-  F  = recs ( G )
2 ordtypelem.2 . . 3  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 ordtypelem.3 . . 3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
4 ordtypelem.5 . . 3  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
5 ordtypelem.6 . . 3  |-  O  = OrdIso
( R ,  A
)
6 ordtypelem.7 . . 3  |-  ( ph  ->  R  We  A )
7 ordtypelem.8 . . 3  |-  ( ph  ->  R Se  A )
81, 2, 3, 4, 5, 6, 7ordtypelem8 7458 . 2  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  ran  O ) )
91, 2, 3, 4, 5, 6, 7ordtypelem4 7454 . . . . 5  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
10 frn 5564 . . . . 5  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  ran  O  C_  A )
119, 10syl 16 . . . 4  |-  ( ph  ->  ran  O  C_  A
)
12 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  b  e.  A
)
136adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  R  We  A
)
147adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  R Se  A )
151, 2, 3, 4, 5, 13, 14ordtypelem8 7458 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O  Isom  _E  ,  R  ( dom  O ,  ran  O ) )
16 isof1o 6012 . . . . . . . . . . . . . 14  |-  ( O 
Isom  _E  ,  R  ( dom  O ,  ran  O )  ->  O : dom  O -1-1-onto-> ran  O )
17 f1of 5641 . . . . . . . . . . . . . 14  |-  ( O : dom  O -1-1-onto-> ran  O  ->  O : dom  O --> ran  O )
1815, 16, 173syl 19 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O : dom  O --> ran  O )
19 f1of1 5640 . . . . . . . . . . . . . . 15  |-  ( O : dom  O -1-1-onto-> ran  O  ->  O : dom  O -1-1-> ran 
O )
2015, 16, 193syl 19 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O : dom  O
-1-1-> ran  O )
21 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  A  /\  -.  b  e.  ran  O )  ->  b  e.  A )
22 seex 4513 . . . . . . . . . . . . . . . 16  |-  ( ( R Se  A  /\  b  e.  A )  ->  { c  e.  A  |  c R b }  e.  _V )
237, 21, 22syl2an 464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  { c  e.  A  |  c R b }  e.  _V )
2411adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  ran  O  C_  A
)
25 rexnal 2685 . . . . . . . . . . . . . . . . . . . 20  |-  ( E. m  e.  dom  O  -.  ( O `  m
) R b  <->  -.  A. m  e.  dom  O ( O `
 m ) R b )
261, 2, 3, 4, 5, 6, 7ordtypelem7 7457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  b  e.  A )  /\  m  e.  dom  O )  -> 
( ( O `  m ) R b  \/  b  e.  ran  O ) )
2726ord 367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  b  e.  A )  /\  m  e.  dom  O )  -> 
( -.  ( O `
 m ) R b  ->  b  e.  ran  O ) )
2827rexlimdva 2798 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  b  e.  A )  ->  ( E. m  e.  dom  O  -.  ( O `  m ) R b  ->  b  e.  ran  O ) )
2925, 28syl5bir 210 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  b  e.  A )  ->  ( -.  A. m  e.  dom  O ( O `  m
) R b  -> 
b  e.  ran  O
) )
3029con1d 118 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  b  e.  A )  ->  ( -.  b  e.  ran  O  ->  A. m  e.  dom  O ( O `  m
) R b ) )
3130impr 603 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  A. m  e.  dom  O ( O `  m
) R b )
32 ffun 5560 . . . . . . . . . . . . . . . . . . . . 21  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  Fun  O )
339, 32syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  Fun  O )
34 funfn 5449 . . . . . . . . . . . . . . . . . . . 20  |-  ( Fun 
O  <->  O  Fn  dom  O )
3533, 34sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  O  Fn  dom  O
)
3635adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O  Fn  dom  O )
37 breq1 4183 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  ( O `  m )  ->  (
c R b  <->  ( O `  m ) R b ) )
3837ralrn 5840 . . . . . . . . . . . . . . . . . 18  |-  ( O  Fn  dom  O  -> 
( A. c  e. 
ran  O  c R
b  <->  A. m  e.  dom  O ( O `  m
) R b ) )
3936, 38syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  ( A. c  e.  ran  O  c R b  <->  A. m  e.  dom  O ( O `  m
) R b ) )
4031, 39mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  A. c  e.  ran  O  c R b )
41 ssrab 3389 . . . . . . . . . . . . . . . 16  |-  ( ran 
O  C_  { c  e.  A  |  c R b }  <->  ( ran  O 
C_  A  /\  A. c  e.  ran  O  c R b ) )
4224, 40, 41sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  ran  O  C_  { c  e.  A  |  c R b } )
4323, 42ssexd 4318 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  ran  O  e.  _V )
44 f1dmex 5938 . . . . . . . . . . . . . 14  |-  ( ( O : dom  O -1-1-> ran 
O  /\  ran  O  e. 
_V )  ->  dom  O  e.  _V )
4520, 43, 44syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  dom  O  e.  _V )
46 fex 5936 . . . . . . . . . . . . 13  |-  ( ( O : dom  O --> ran  O  /\  dom  O  e.  _V )  ->  O  e.  _V )
4718, 45, 46syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O  e.  _V )
481, 2, 3, 4, 5, 13, 14, 47ordtypelem9 7459 . . . . . . . . . . 11  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O  Isom  _E  ,  R  ( dom  O ,  A ) )
49 isof1o 6012 . . . . . . . . . . 11  |-  ( O 
Isom  _E  ,  R  ( dom  O ,  A
)  ->  O : dom  O -1-1-onto-> A )
5048, 49syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  O : dom  O -1-1-onto-> A )
51 f1ofo 5648 . . . . . . . . . 10  |-  ( O : dom  O -1-1-onto-> A  ->  O : dom  O -onto-> A
)
52 forn 5623 . . . . . . . . . 10  |-  ( O : dom  O -onto-> A  ->  ran  O  =  A )
5350, 51, 523syl 19 . . . . . . . . 9  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  ran  O  =  A )
5412, 53eleqtrrd 2489 . . . . . . . 8  |-  ( (
ph  /\  ( b  e.  A  /\  -.  b  e.  ran  O ) )  ->  b  e.  ran  O )
5554expr 599 . . . . . . 7  |-  ( (
ph  /\  b  e.  A )  ->  ( -.  b  e.  ran  O  ->  b  e.  ran  O ) )
5655pm2.18d 105 . . . . . 6  |-  ( (
ph  /\  b  e.  A )  ->  b  e.  ran  O )
5756ex 424 . . . . 5  |-  ( ph  ->  ( b  e.  A  ->  b  e.  ran  O
) )
5857ssrdv 3322 . . . 4  |-  ( ph  ->  A  C_  ran  O )
5911, 58eqssd 3333 . . 3  |-  ( ph  ->  ran  O  =  A )
60 isoeq5 6010 . . 3  |-  ( ran 
O  =  A  -> 
( O  Isom  _E  ,  R  ( dom  O ,  ran  O )  <->  O  Isom  _E  ,  R  ( dom 
O ,  A ) ) )
6159, 60syl 16 . 2  |-  ( ph  ->  ( O  Isom  _E  ,  R  ( dom  O ,  ran  O )  <->  O  Isom  _E  ,  R  ( dom 
O ,  A ) ) )
628, 61mpbid 202 1  |-  ( ph  ->  O  Isom  _E  ,  R  ( dom  O ,  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   {crab 2678   _Vcvv 2924    i^i cin 3287    C_ wss 3288   class class class wbr 4180    e. cmpt 4234    _E cep 4460   Se wse 4507    We wwe 4508   Oncon0 4549   dom cdm 4845   ran crn 4846   "cima 4848   Fun wfun 5415    Fn wfn 5416   -->wf 5417   -1-1->wf1 5418   -onto->wfo 5419   -1-1-onto->wf1o 5420   ` cfv 5421    Isom wiso 5422   iota_crio 6509  recscrecs 6599  OrdIsocoi 7442
This theorem is referenced by:  ordtype  7465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6516  df-recs 6600  df-oi 7443
  Copyright terms: Public domain W3C validator