MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Structured version   Unicode version

Theorem ordtypelem2 7517
Description: Lemma for ordtype 7530. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem2  |-  ( ph  ->  Ord  T )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
2 ssrab2 3414 . . . . . . . . . 10  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  C_  On
31, 2eqsstri 3364 . . . . . . . . 9  |-  T  C_  On
43a1i 11 . . . . . . . 8  |-  ( ph  ->  T  C_  On )
54sselda 3334 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  On )
6 onss 4800 . . . . . . 7  |-  ( a  e.  On  ->  a  C_  On )
75, 6syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  On )
8 eloni 4620 . . . . . . . 8  |-  ( a  e.  On  ->  Ord  a )
95, 8syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  Ord  a )
10 imaeq2 5228 . . . . . . . . . . . 12  |-  ( x  =  a  ->  ( F " x )  =  ( F " a
) )
1110raleqdv 2916 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " a
) z R t ) )
1211rexbidv 2732 . . . . . . . . . 10  |-  ( x  =  a  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1312, 1elrab2 3100 . . . . . . . . 9  |-  ( a  e.  T  <->  ( a  e.  On  /\  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1413simprbi 452 . . . . . . . 8  |-  ( a  e.  T  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
1514adantl 454 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
16 ordelss 4626 . . . . . . . . 9  |-  ( ( Ord  a  /\  x  e.  a )  ->  x  C_  a )
17 imass2 5269 . . . . . . . . 9  |-  ( x 
C_  a  ->  ( F " x )  C_  ( F " a ) )
18 ssralv 3393 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( A. z  e.  ( F " a ) z R t  ->  A. z  e.  ( F " x
) z R t ) )
1918reximdv 2823 . . . . . . . . 9  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2016, 17, 193syl 19 . . . . . . . 8  |-  ( ( Ord  a  /\  x  e.  a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2120ralrimdva 2802 . . . . . . 7  |-  ( Ord  a  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
229, 15, 21sylc 59 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t )
23 ssrab 3407 . . . . . 6  |-  ( a 
C_  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  <->  ( a  C_  On  /\  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
247, 22, 23sylanbrc 647 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  a  C_ 
{ x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } )
2524, 1syl6sseqr 3381 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  T )
2625ralrimiva 2795 . . 3  |-  ( ph  ->  A. a  e.  T  a  C_  T )
27 dftr3 4331 . . 3  |-  ( Tr  T  <->  A. a  e.  T  a  C_  T )
2826, 27sylibr 205 . 2  |-  ( ph  ->  Tr  T )
29 ordon 4792 . . 3  |-  Ord  On
30 trssord 4627 . . 3  |-  ( ( Tr  T  /\  T  C_  On  /\  Ord  On )  ->  Ord  T )
313, 29, 30mp3an23 1272 . 2  |-  ( Tr  T  ->  Ord  T )
3228, 31syl 16 1  |-  ( ph  ->  Ord  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   E.wrex 2712   {crab 2715   _Vcvv 2962    C_ wss 3306   class class class wbr 4237    e. cmpt 4291   Tr wtr 4327   Se wse 4568    We wwe 4569   Ord word 4609   Oncon0 4610   ran crn 4908   "cima 4910   iota_crio 6571  recscrecs 6661  OrdIsocoi 7507
This theorem is referenced by:  ordtypelem5  7520  ordtypelem6  7521  ordtypelem7  7522  ordtypelem8  7523  ordtypelem9  7524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-tr 4328  df-eprel 4523  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-xp 4913  df-cnv 4915  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920
  Copyright terms: Public domain W3C validator