MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem2 Unicode version

Theorem ordtypelem2 7448
Description: Lemma for ordtype 7461. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem2  |-  ( ph  ->  Ord  T )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.5 . . . . . . . . . 10  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
2 ssrab2 3392 . . . . . . . . . 10  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  C_  On
31, 2eqsstri 3342 . . . . . . . . 9  |-  T  C_  On
43a1i 11 . . . . . . . 8  |-  ( ph  ->  T  C_  On )
54sselda 3312 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  a  e.  On )
6 onss 4734 . . . . . . 7  |-  ( a  e.  On  ->  a  C_  On )
75, 6syl 16 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  On )
8 eloni 4555 . . . . . . . 8  |-  ( a  e.  On  ->  Ord  a )
95, 8syl 16 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  Ord  a )
10 imaeq2 5162 . . . . . . . . . . . 12  |-  ( x  =  a  ->  ( F " x )  =  ( F " a
) )
1110raleqdv 2874 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " a
) z R t ) )
1211rexbidv 2691 . . . . . . . . . 10  |-  ( x  =  a  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1312, 1elrab2 3058 . . . . . . . . 9  |-  ( a  e.  T  <->  ( a  e.  On  /\  E. t  e.  A  A. z  e.  ( F " a
) z R t ) )
1413simprbi 451 . . . . . . . 8  |-  ( a  e.  T  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
1514adantl 453 . . . . . . 7  |-  ( (
ph  /\  a  e.  T )  ->  E. t  e.  A  A. z  e.  ( F " a
) z R t )
16 ordelss 4561 . . . . . . . . 9  |-  ( ( Ord  a  /\  x  e.  a )  ->  x  C_  a )
17 imass2 5203 . . . . . . . . 9  |-  ( x 
C_  a  ->  ( F " x )  C_  ( F " a ) )
18 ssralv 3371 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( A. z  e.  ( F " a ) z R t  ->  A. z  e.  ( F " x
) z R t ) )
1918reximdv 2781 . . . . . . . . 9  |-  ( ( F " x ) 
C_  ( F "
a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2016, 17, 193syl 19 . . . . . . . 8  |-  ( ( Ord  a  /\  x  e.  a )  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
2120ralrimdva 2760 . . . . . . 7  |-  ( Ord  a  ->  ( E. t  e.  A  A. z  e.  ( F " a ) z R t  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
229, 15, 21sylc 58 . . . . . 6  |-  ( (
ph  /\  a  e.  T )  ->  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t )
23 ssrab 3385 . . . . . 6  |-  ( a 
C_  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x
) z R t }  <->  ( a  C_  On  /\  A. x  e.  a  E. t  e.  A  A. z  e.  ( F " x
) z R t ) )
247, 22, 23sylanbrc 646 . . . . 5  |-  ( (
ph  /\  a  e.  T )  ->  a  C_ 
{ x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t } )
2524, 1syl6sseqr 3359 . . . 4  |-  ( (
ph  /\  a  e.  T )  ->  a  C_  T )
2625ralrimiva 2753 . . 3  |-  ( ph  ->  A. a  e.  T  a  C_  T )
27 dftr3 4270 . . 3  |-  ( Tr  T  <->  A. a  e.  T  a  C_  T )
2826, 27sylibr 204 . 2  |-  ( ph  ->  Tr  T )
29 ordon 4726 . . 3  |-  Ord  On
30 trssord 4562 . . 3  |-  ( ( Tr  T  /\  T  C_  On  /\  Ord  On )  ->  Ord  T )
313, 29, 30mp3an23 1271 . 2  |-  ( Tr  T  ->  Ord  T )
3228, 31syl 16 1  |-  ( ph  ->  Ord  T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   E.wrex 2671   {crab 2674   _Vcvv 2920    C_ wss 3284   class class class wbr 4176    e. cmpt 4230   Tr wtr 4266   Se wse 4503    We wwe 4504   Ord word 4544   Oncon0 4545   ran crn 4842   "cima 4844   iota_crio 6505  recscrecs 6595  OrdIsocoi 7438
This theorem is referenced by:  ordtypelem5  7451  ordtypelem6  7452  ordtypelem7  7453  ordtypelem8  7454  ordtypelem9  7455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-tr 4267  df-eprel 4458  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-xp 4847  df-cnv 4849  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854
  Copyright terms: Public domain W3C validator