MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Unicode version

Theorem ordtypelem3 7235
Description: Lemma for ordtype 7247. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, M    R, h, j, t, u, v, w, x, z    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 inss2 3390 . . . . 5  |-  ( T  i^i  dom  F )  C_ 
dom  F
2 simpr 447 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  ( T  i^i  dom  F ) )
31, 2sseldi 3178 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  dom  F )
4 ordtypelem.1 . . . . 5  |-  F  = recs ( G )
54tfr2a 6411 . . . 4  |-  ( M  e.  dom  F  -> 
( F `  M
)  =  ( G `
 ( F  |`  M ) ) )
63, 5syl 15 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  =  ( G `  ( F  |`  M ) ) )
74tfr1a 6410 . . . . . . . . 9  |-  ( Fun 
F  /\  Lim  dom  F
)
87simpri 448 . . . . . . . 8  |-  Lim  dom  F
9 limord 4451 . . . . . . . 8  |-  ( Lim 
dom  F  ->  Ord  dom  F )
108, 9ax-mp 8 . . . . . . 7  |-  Ord  dom  F
11 ordelord 4414 . . . . . . 7  |-  ( ( Ord  dom  F  /\  M  e.  dom  F )  ->  Ord  M )
1210, 3, 11sylancr 644 . . . . . 6  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  Ord  M )
134tfr2b 6412 . . . . . 6  |-  ( Ord 
M  ->  ( M  e.  dom  F  <->  ( F  |`  M )  e.  _V ) )
1412, 13syl 15 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( M  e.  dom  F  <->  ( F  |`  M )  e.  _V ) )
153, 14mpbid 201 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F  |`  M )  e. 
_V )
16 ordtypelem.2 . . . . . . 7  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
17 rneq 4904 . . . . . . . . . 10  |-  ( h  =  ( F  |`  M )  ->  ran  h  =  ran  ( F  |`  M ) )
18 df-ima 4702 . . . . . . . . . 10  |-  ( F
" M )  =  ran  ( F  |`  M )
1917, 18syl6eqr 2333 . . . . . . . . 9  |-  ( h  =  ( F  |`  M )  ->  ran  h  =  ( F " M ) )
2019raleqdv 2742 . . . . . . . 8  |-  ( h  =  ( F  |`  M )  ->  ( A. j  e.  ran  h  j R w  <->  A. j  e.  ( F " M ) j R w ) )
2120rabbidv 2780 . . . . . . 7  |-  ( h  =  ( F  |`  M )  ->  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ( F " M ) j R w }
)
2216, 21syl5eq 2327 . . . . . 6  |-  ( h  =  ( F  |`  M )  ->  C  =  { w  e.  A  |  A. j  e.  ( F " M ) j R w }
)
2322raleqdv 2742 . . . . . 6  |-  ( h  =  ( F  |`  M )  ->  ( A. u  e.  C  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
2422, 23riotaeqbidv 6307 . . . . 5  |-  ( h  =  ( F  |`  M )  ->  ( iota_ v  e.  C A. u  e.  C  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
25 ordtypelem.3 . . . . 5  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
26 riotaex 6308 . . . . 5  |-  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e.  _V
2724, 25, 26fvmpt 5602 . . . 4  |-  ( ( F  |`  M )  e.  _V  ->  ( G `  ( F  |`  M ) )  =  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M
) j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
2815, 27syl 15 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( G `  ( F  |`  M ) )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
296, 28eqtrd 2315 . 2  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  =  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v ) )
30 ordtypelem.7 . . . . 5  |-  ( ph  ->  R  We  A )
3130adantr 451 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  R  We  A )
32 ordtypelem.8 . . . . 5  |-  ( ph  ->  R Se  A )
3332adantr 451 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  R Se  A )
34 ssrab2 3258 . . . . 5  |-  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  C_  A
3534a1i 10 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  C_  A
)
36 inss1 3389 . . . . . . . 8  |-  ( T  i^i  dom  F )  C_  T
3736, 2sseldi 3178 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  M  e.  T )
38 imaeq2 5008 . . . . . . . . . . 11  |-  ( x  =  M  ->  ( F " x )  =  ( F " M
) )
3938raleqdv 2742 . . . . . . . . . 10  |-  ( x  =  M  ->  ( A. z  e.  ( F " x ) z R t  <->  A. z  e.  ( F " M
) z R t ) )
4039rexbidv 2564 . . . . . . . . 9  |-  ( x  =  M  ->  ( E. t  e.  A  A. z  e.  ( F " x ) z R t  <->  E. t  e.  A  A. z  e.  ( F " M
) z R t ) )
41 ordtypelem.5 . . . . . . . . 9  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
4240, 41elrab2 2925 . . . . . . . 8  |-  ( M  e.  T  <->  ( M  e.  On  /\  E. t  e.  A  A. z  e.  ( F " M
) z R t ) )
4342simprbi 450 . . . . . . 7  |-  ( M  e.  T  ->  E. t  e.  A  A. z  e.  ( F " M
) z R t )
4437, 43syl 15 . . . . . 6  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E. t  e.  A  A. z  e.  ( F " M
) z R t )
45 breq1 4026 . . . . . . . . 9  |-  ( j  =  z  ->  (
j R w  <->  z R w ) )
4645cbvralv 2764 . . . . . . . 8  |-  ( A. j  e.  ( F " M ) j R w  <->  A. z  e.  ( F " M ) z R w )
47 breq2 4027 . . . . . . . . 9  |-  ( w  =  t  ->  (
z R w  <->  z R
t ) )
4847ralbidv 2563 . . . . . . . 8  |-  ( w  =  t  ->  ( A. z  e.  ( F " M ) z R w  <->  A. z  e.  ( F " M
) z R t ) )
4946, 48syl5bb 248 . . . . . . 7  |-  ( w  =  t  ->  ( A. j  e.  ( F " M ) j R w  <->  A. z  e.  ( F " M
) z R t ) )
5049cbvrexv 2765 . . . . . 6  |-  ( E. w  e.  A  A. j  e.  ( F " M ) j R w  <->  E. t  e.  A  A. z  e.  ( F " M ) z R t )
5144, 50sylibr 203 . . . . 5  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E. w  e.  A  A. j  e.  ( F " M
) j R w )
52 rabn0 3474 . . . . 5  |-  ( { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/)  <->  E. w  e.  A  A. j  e.  ( F " M ) j R w )
5351, 52sylibr 203 . . . 4  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/) )
54 wereu2 4390 . . . 4  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( { w  e.  A  |  A. j  e.  ( F " M
) j R w }  C_  A  /\  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  =/=  (/) ) )  ->  E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )
5531, 33, 35, 53, 54syl22anc 1183 . . 3  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )
56 riotacl2 6318 . . 3  |-  ( E! v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v  -> 
( iota_ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e. 
{ v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
5755, 56syl 15 . 2  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w } A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
5829, 57eqeltrd 2357 1  |-  ( (
ph  /\  M  e.  ( T  i^i  dom  F
) )  ->  ( F `  M )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " M ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " M ) j R w }  -.  u R v } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   E!wreu 2545   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077   Se wse 4350    We wwe 4351   Ord word 4391   Oncon0 4392   Lim wlim 4393   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249   ` cfv 5255   iota_crio 6297  recscrecs 6387  OrdIsocoi 7224
This theorem is referenced by:  ordtypelem4  7236  ordtypelem6  7238  ordtypelem7  7239
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 6304  df-recs 6388
  Copyright terms: Public domain W3C validator