MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem4 Unicode version

Theorem ordtypelem4 7236
Description: Lemma for ordtype 7247. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem4  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, R    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    O( z, w, h, j)

Proof of Theorem ordtypelem4
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ordtypelem.1 . . . . . . . 8  |-  F  = recs ( G )
21tfr1a 6410 . . . . . . 7  |-  ( Fun 
F  /\  Lim  dom  F
)
32simpli 444 . . . . . 6  |-  Fun  F
4 funres 5293 . . . . . 6  |-  ( Fun 
F  ->  Fun  ( F  |`  T ) )
53, 4mp1i 11 . . . . 5  |-  ( ph  ->  Fun  ( F  |`  T ) )
6 funfn 5283 . . . . 5  |-  ( Fun  ( F  |`  T )  <-> 
( F  |`  T )  Fn  dom  ( F  |`  T ) )
75, 6sylib 188 . . . 4  |-  ( ph  ->  ( F  |`  T )  Fn  dom  ( F  |`  T ) )
8 dmres 4976 . . . . 5  |-  dom  ( F  |`  T )  =  ( T  i^i  dom  F )
98fneq2i 5339 . . . 4  |-  ( ( F  |`  T )  Fn  dom  ( F  |`  T )  <->  ( F  |`  T )  Fn  ( T  i^i  dom  F )
)
107, 9sylib 188 . . 3  |-  ( ph  ->  ( F  |`  T )  Fn  ( T  i^i  dom 
F ) )
11 inss1 3389 . . . . . . 7  |-  ( T  i^i  dom  F )  C_  T
12 simpr 447 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  a  e.  ( T  i^i  dom  F ) )
1311, 12sseldi 3178 . . . . . 6  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  a  e.  T )
14 fvres 5542 . . . . . 6  |-  ( a  e.  T  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
1513, 14syl 15 . . . . 5  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
16 ssrab2 3258 . . . . . . 7  |-  { v  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } 
C_  { w  e.  A  |  A. j  e.  ( F " a
) j R w }
17 ssrab2 3258 . . . . . . 7  |-  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  C_  A
1816, 17sstri 3188 . . . . . 6  |-  { v  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } 
C_  A
19 ordtypelem.2 . . . . . . 7  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
20 ordtypelem.3 . . . . . . 7  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
21 ordtypelem.5 . . . . . . 7  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
22 ordtypelem.6 . . . . . . 7  |-  O  = OrdIso
( R ,  A
)
23 ordtypelem.7 . . . . . . 7  |-  ( ph  ->  R  We  A )
24 ordtypelem.8 . . . . . . 7  |-  ( ph  ->  R Se  A )
251, 19, 20, 21, 22, 23, 24ordtypelem3 7235 . . . . . 6  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
2618, 25sseldi 3178 . . . . 5  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  A )
2715, 26eqeltrd 2357 . . . 4  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  (
( F  |`  T ) `
 a )  e.  A )
2827ralrimiva 2626 . . 3  |-  ( ph  ->  A. a  e.  ( T  i^i  dom  F
) ( ( F  |`  T ) `  a
)  e.  A )
29 ffnfv 5685 . . 3  |-  ( ( F  |`  T ) : ( T  i^i  dom 
F ) --> A  <->  ( ( F  |`  T )  Fn  ( T  i^i  dom  F )  /\  A. a  e.  ( T  i^i  dom  F ) ( ( F  |`  T ) `  a
)  e.  A ) )
3010, 28, 29sylanbrc 645 . 2  |-  ( ph  ->  ( F  |`  T ) : ( T  i^i  dom 
F ) --> A )
311, 19, 20, 21, 22, 23, 24ordtypelem1 7233 . . 3  |-  ( ph  ->  O  =  ( F  |`  T ) )
3231feq1d 5379 . 2  |-  ( ph  ->  ( O : ( T  i^i  dom  F
) --> A  <->  ( F  |`  T ) : ( T  i^i  dom  F
) --> A ) )
3330, 32mpbird 223 1  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    i^i cin 3151   class class class wbr 4023    e. cmpt 4077   Se wse 4350    We wwe 4351   Oncon0 4392   Lim wlim 4393   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255   iota_crio 6297  recscrecs 6387  OrdIsocoi 7224
This theorem is referenced by:  ordtypelem5  7237  ordtypelem6  7238  ordtypelem7  7239  ordtypelem8  7240  ordtypelem9  7241  ordtypelem10  7242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 6304  df-recs 6388  df-oi 7225
  Copyright terms: Public domain W3C validator