MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem7 Unicode version

Theorem ordtypelem7 7386
Description: Lemma for ordtype 7394. 
ran  O is an initial segment of  A under the well-order  R. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1  |-  F  = recs ( G )
ordtypelem.2  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
ordtypelem.3  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
ordtypelem.5  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
ordtypelem.6  |-  O  = OrdIso
( R ,  A
)
ordtypelem.7  |-  ( ph  ->  R  We  A )
ordtypelem.8  |-  ( ph  ->  R Se  A )
Assertion
Ref Expression
ordtypelem7  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( ( O `  M ) R N  \/  N  e.  ran  O ) )
Distinct variable groups:    v, u, C    h, j, t, u, v, w, x, z, M    j, N, u, w    R, h, j, t, u, v, w, x, z    A, h, j, t, u, v, w, x, z    t, O, u, v, x    ph, t, x    h, F, j, t, u, v, w, x, z
Allowed substitution hints:    ph( z, w, v, u, h, j)    C( x, z, w, t, h, j)    T( x, z, w, v, u, t, h, j)    G( x, z, w, v, u, t, h, j)    N( x, z, v, t, h)    O( z, w, h, j)

Proof of Theorem ordtypelem7
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3248 . . . . . 6  |-  ( N  e.  ( A  \  ran  O )  <->  ( N  e.  A  /\  -.  N  e.  ran  O ) )
2 ordtypelem.1 . . . . . . . . . . . 12  |-  F  = recs ( G )
3 ordtypelem.2 . . . . . . . . . . . 12  |-  C  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
4 ordtypelem.3 . . . . . . . . . . . 12  |-  G  =  ( h  e.  _V  |->  ( iota_ v  e.  C A. u  e.  C  -.  u R v ) )
5 ordtypelem.5 . . . . . . . . . . . 12  |-  T  =  { x  e.  On  |  E. t  e.  A  A. z  e.  ( F " x ) z R t }
6 ordtypelem.6 . . . . . . . . . . . 12  |-  O  = OrdIso
( R ,  A
)
7 ordtypelem.7 . . . . . . . . . . . 12  |-  ( ph  ->  R  We  A )
8 ordtypelem.8 . . . . . . . . . . . 12  |-  ( ph  ->  R Se  A )
92, 3, 4, 5, 6, 7, 8ordtypelem4 7383 . . . . . . . . . . 11  |-  ( ph  ->  O : ( T  i^i  dom  F ) --> A )
109adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  O : ( T  i^i  dom 
F ) --> A )
11 fdm 5499 . . . . . . . . . 10  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  dom  O  =  ( T  i^i  dom  F )
)
1210, 11syl 15 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  dom  O  =  ( T  i^i  dom 
F ) )
13 inss1 3477 . . . . . . . . . 10  |-  ( T  i^i  dom  F )  C_  T
142, 3, 4, 5, 6, 7, 8ordtypelem2 7381 . . . . . . . . . . . 12  |-  ( ph  ->  Ord  T )
1514adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  T )
16 ordsson 4684 . . . . . . . . . . 11  |-  ( Ord 
T  ->  T  C_  On )
1715, 16syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  T  C_  On )
1813, 17syl5ss 3276 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( T  i^i  dom  F )  C_  On )
1912, 18eqsstrd 3298 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  dom  O 
C_  On )
2019sseld 3265 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  ->  M  e.  On )
)
21 eleq1 2426 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a  e.  dom  O  <->  b  e.  dom  O ) )
22 fveq2 5632 . . . . . . . . . . . 12  |-  ( a  =  b  ->  ( O `  a )  =  ( O `  b ) )
2322breq1d 4135 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
( O `  a
) R N  <->  ( O `  b ) R N ) )
2421, 23imbi12d 311 . . . . . . . . . 10  |-  ( a  =  b  ->  (
( a  e.  dom  O  ->  ( O `  a ) R N )  <->  ( b  e. 
dom  O  ->  ( O `
 b ) R N ) ) )
2524imbi2d 307 . . . . . . . . 9  |-  ( a  =  b  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) )  <->  ( ( ph  /\  N  e.  ( A  \  ran  O
) )  ->  (
b  e.  dom  O  ->  ( O `  b
) R N ) ) ) )
26 eleq1 2426 . . . . . . . . . . 11  |-  ( a  =  M  ->  (
a  e.  dom  O  <->  M  e.  dom  O ) )
27 fveq2 5632 . . . . . . . . . . . 12  |-  ( a  =  M  ->  ( O `  a )  =  ( O `  M ) )
2827breq1d 4135 . . . . . . . . . . 11  |-  ( a  =  M  ->  (
( O `  a
) R N  <->  ( O `  M ) R N ) )
2926, 28imbi12d 311 . . . . . . . . . 10  |-  ( a  =  M  ->  (
( a  e.  dom  O  ->  ( O `  a ) R N )  <->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) ) )
3029imbi2d 307 . . . . . . . . 9  |-  ( a  =  M  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) )  <->  ( ( ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) ) ) )
31 r19.21v 2715 . . . . . . . . . 10  |-  ( A. b  e.  a  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  (
b  e.  dom  O  ->  ( O `  b
) R N ) )  <->  ( ( ph  /\  N  e.  ( A 
\  ran  O )
)  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) ) )
322tfr1a 6552 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Fun 
F  /\  Lim  dom  F
)
3332simpri 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  Lim  dom  F
34 limord 4554 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Lim 
dom  F  ->  Ord  dom  F )
3533, 34ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  Ord  dom  F
36 ordin 4525 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Ord  T  /\  Ord  dom 
F )  ->  Ord  ( T  i^i  dom  F
) )
3715, 35, 36sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  ( T  i^i  dom  F
) )
38 ordeq 4502 . . . . . . . . . . . . . . . . . . . . 21  |-  ( dom 
O  =  ( T  i^i  dom  F )  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F ) ) )
3912, 38syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( Ord  dom  O  <->  Ord  ( T  i^i  dom  F )
) )
4037, 39mpbird 223 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  Ord  dom 
O )
41 ordelss 4511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  dom  O  /\  a  e.  dom  O )  ->  a  C_  dom  O )
4240, 41sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
a  C_  dom  O )
4342sselda 3266 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  /\  b  e.  a )  ->  b  e.  dom  O )
44 pm5.5 326 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  dom  O  -> 
( ( b  e. 
dom  O  ->  ( O `
 b ) R N )  <->  ( O `  b ) R N ) )
4543, 44syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  /\  b  e.  a )  ->  (
( b  e.  dom  O  ->  ( O `  b ) R N )  <->  ( O `  b ) R N ) )
4645ralbidva 2644 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  <->  A. b  e.  a  ( O `  b ) R N ) )
47 eldifn 3386 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  ( A  \  ran  O )  ->  -.  N  e.  ran  O )
4847ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  N  e.  ran  O )
499ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O :
( T  i^i  dom  F ) --> A )
50 ffn 5495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( O : ( T  i^i  dom 
F ) --> A  ->  O  Fn  ( T  i^i  dom  F ) )
5149, 50syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O  Fn  ( T  i^i  dom  F
) )
52 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  dom  O )
5349, 11syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  dom  O  =  ( T  i^i  dom  F ) )
5452, 53eleqtrd 2442 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  ( T  i^i  dom  F
) )
55 fnfvelrn 5769 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O  Fn  ( T  i^i  dom  F )  /\  a  e.  ( T  i^i  dom  F )
)  ->  ( O `  a )  e.  ran  O )
5651, 54, 55syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  ran  O )
57 eleq1 2426 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  a )  =  N  ->  (
( O `  a
)  e.  ran  O  <->  N  e.  ran  O ) )
5856, 57syl5ibcom 211 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a )  =  N  ->  N  e. 
ran  O ) )
5948, 58mtod 168 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  ( O `  a )  =  N )
60 eldifi 3385 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  ( A  \  ran  O )  ->  N  e.  A )
6160ad2antlr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  N  e.  A )
62 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. b  e.  a  ( O `  b ) R N )
632, 3, 4, 5, 6, 7, 8ordtypelem1 7380 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  O  =  ( F  |`  T ) )
6463ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  O  =  ( F  |`  T ) )
6542adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  dom  O )
6665, 53sseqtrd 3300 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  ( T  i^i  dom  F
) )
6766, 13syl6ss 3277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  T )
68 fveq1 5631 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( O  =  ( F  |`  T )  ->  ( O `  b )  =  ( ( F  |`  T ) `  b
) )
69 ssel2 3261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( a  C_  T  /\  b  e.  a )  ->  b  e.  T )
70 fvres 5649 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( b  e.  T  ->  (
( F  |`  T ) `
 b )  =  ( F `  b
) )
7169, 70syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( a  C_  T  /\  b  e.  a )  ->  ( ( F  |`  T ) `  b
)  =  ( F `
 b ) )
7268, 71sylan9eq 2418 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( O  =  ( F  |`  T )  /\  (
a  C_  T  /\  b  e.  a )
)  ->  ( O `  b )  =  ( F `  b ) )
7372anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( O  =  ( F  |`  T )  /\  a  C_  T )  /\  b  e.  a )  ->  ( O `  b )  =  ( F `  b ) )
7473breq1d 4135 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( O  =  ( F  |`  T )  /\  a  C_  T )  /\  b  e.  a )  ->  ( ( O `  b ) R N  <->  ( F `  b ) R N ) )
7574ralbidva 2644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( O  =  ( F  |`  T )  /\  a  C_  T )  ->  ( A. b  e.  a 
( O `  b
) R N  <->  A. b  e.  a  ( F `  b ) R N ) )
7664, 67, 75syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( A. b  e.  a  ( O `  b ) R N  <->  A. b  e.  a  ( F `  b
) R N ) )
7762, 76mpbid 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. b  e.  a  ( F `  b ) R N )
7832simpli 444 . . . . . . . . . . . . . . . . . . . . . 22  |-  Fun  F
79 funfn 5386 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
F  <->  F  Fn  dom  F )
8078, 79mpbi 199 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  dom  F
81 inss2 3478 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( T  i^i  dom  F )  C_ 
dom  F
8266, 81syl6ss 3277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  C_  dom  F )
83 breq1 4128 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  ( F `  b )  ->  (
j R N  <->  ( F `  b ) R N ) )
8483ralima 5878 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F  Fn  dom  F  /\  a  C_  dom  F
)  ->  ( A. j  e.  ( F " a ) j R N  <->  A. b  e.  a  ( F `  b
) R N ) )
8580, 82, 84sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( A. j  e.  ( F " a ) j R N  <->  A. b  e.  a  ( F `  b
) R N ) )
8677, 85mpbird 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. j  e.  ( F " a
) j R N )
87 breq2 4129 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  N  ->  (
j R w  <->  j R N ) )
8887ralbidv 2648 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  =  N  ->  ( A. j  e.  ( F " a ) j R w  <->  A. j  e.  ( F " a
) j R N ) )
8988elrab 3009 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  <->  ( N  e.  A  /\  A. j  e.  ( F " a
) j R N ) )
9061, 86, 89sylanbrc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  N  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w } )
9164fveq1d 5634 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  =  ( ( F  |`  T ) `
 a ) )
9213, 54sseldi 3264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  a  e.  T )
93 fvres 5649 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( a  e.  T  ->  (
( F  |`  T ) `
 a )  =  ( F `  a
) )
9492, 93syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( F  |`  T ) `  a )  =  ( F `  a ) )
9591, 94eqtrd 2398 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  =  ( F `  a ) )
96 simpll 730 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ph )
972, 3, 4, 5, 6, 7, 8ordtypelem3 7382 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( F `  a )  e.  { v  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
9896, 54, 97syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( F `  a )  e.  {
v  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
9995, 98eqeltrd 2440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  {
v  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v } )
100 breq2 4129 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( O `  a )  ->  (
u R v  <->  u R
( O `  a
) ) )
101100notbid 285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( O `  a )  ->  ( -.  u R v  <->  -.  u R ( O `  a ) ) )
102101ralbidv 2648 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( O `  a )  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `
 a ) ) )
103102elrab 3009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O `  a )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v }  <->  ( ( O `  a )  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  /\  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a ) ) )
104103simprbi 450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( O `  a )  e.  { v  e. 
{ w  e.  A  |  A. j  e.  ( F " a ) j R w }  |  A. u  e.  {
w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R v }  ->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a ) )
10599, 104syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `
 a ) )
106 breq1 4128 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  =  N  ->  (
u R ( O `
 a )  <->  N R
( O `  a
) ) )
107106notbid 285 . . . . . . . . . . . . . . . . . . 19  |-  ( u  =  N  ->  ( -.  u R ( O `
 a )  <->  -.  N R ( O `  a ) ) )
108107rspcv 2965 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  { w  e.  A  |  A. j  e.  ( F " a
) j R w }  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ( F " a ) j R w }  -.  u R ( O `  a )  ->  -.  N R ( O `  a ) ) )
10990, 105, 108sylc 56 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  -.  N R ( O `  a ) )
110 weso 4487 . . . . . . . . . . . . . . . . . . . . 21  |-  ( R  We  A  ->  R  Or  A )
1117, 110syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  R  Or  A )
112111ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  R  Or  A )
113 ffvelrn 5770 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( O : ( T  i^i  dom  F ) --> A  /\  a  e.  ( T  i^i  dom  F
) )  ->  ( O `  a )  e.  A )
11449, 54, 113syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a )  e.  A
)
115 sotric 4443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Or  A  /\  ( ( O `  a )  e.  A  /\  N  e.  A
) )  ->  (
( O `  a
) R N  <->  -.  (
( O `  a
)  =  N  \/  N R ( O `  a ) ) ) )
116112, 114, 61, 115syl12anc 1181 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a ) R N  <->  -.  ( ( O `  a )  =  N  \/  N R ( O `  a ) ) ) )
117 ioran 476 . . . . . . . . . . . . . . . . . 18  |-  ( -.  ( ( O `  a )  =  N  \/  N R ( O `  a ) )  <->  ( -.  ( O `  a )  =  N  /\  -.  N R ( O `  a ) ) )
118116, 117syl6bb 252 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( ( O `  a ) R N  <->  ( -.  ( O `  a )  =  N  /\  -.  N R ( O `  a ) ) ) )
11959, 109, 118mpbir2and 888 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  (
a  e.  dom  O  /\  A. b  e.  a  ( O `  b
) R N ) )  ->  ( O `  a ) R N )
120119expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( O `  b ) R N  ->  ( O `  a ) R N ) )
12146, 120sylbid 206 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  /\  a  e.  dom  O )  -> 
( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  ->  ( O `  a ) R N ) )
122121ex 423 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  (
a  e.  dom  O  ->  ( A. b  e.  a  ( b  e. 
dom  O  ->  ( O `
 b ) R N )  ->  ( O `  a ) R N ) ) )
123122com23 72 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( A. b  e.  a 
( b  e.  dom  O  ->  ( O `  b ) R N )  ->  ( a  e.  dom  O  ->  ( O `  a ) R N ) ) )
124123a2i 12 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) )  -> 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) ) )
125124a1i 10 . . . . . . . . . 10  |-  ( a  e.  On  ->  (
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  A. b  e.  a  ( b  e.  dom  O  ->  ( O `  b ) R N ) )  ->  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  (
a  e.  dom  O  ->  ( O `  a
) R N ) ) ) )
12631, 125syl5bi 208 . . . . . . . . 9  |-  ( a  e.  On  ->  ( A. b  e.  a 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( b  e. 
dom  O  ->  ( O `
 b ) R N ) )  -> 
( ( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( a  e. 
dom  O  ->  ( O `
 a ) R N ) ) ) )
12725, 30, 126tfis3 4751 . . . . . . . 8  |-  ( M  e.  On  ->  (
( ph  /\  N  e.  ( A  \  ran  O ) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) ) )
128127com3l 75 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( M  e.  On  ->  ( O `  M
) R N ) ) )
12920, 128mpdd 36 . . . . . 6  |-  ( (
ph  /\  N  e.  ( A  \  ran  O
) )  ->  ( M  e.  dom  O  -> 
( O `  M
) R N ) )
1301, 129sylan2br 462 . . . . 5  |-  ( (
ph  /\  ( N  e.  A  /\  -.  N  e.  ran  O ) )  ->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) )
131130anassrs 629 . . . 4  |-  ( ( ( ph  /\  N  e.  A )  /\  -.  N  e.  ran  O )  ->  ( M  e. 
dom  O  ->  ( O `
 M ) R N ) )
132131impancom 427 . . 3  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( -.  N  e. 
ran  O  ->  ( O `
 M ) R N ) )
133132orrd 367 . 2  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( N  e.  ran  O  \/  ( O `  M ) R N ) )
134133orcomd 377 1  |-  ( ( ( ph  /\  N  e.  A )  /\  M  e.  dom  O )  -> 
( ( O `  M ) R N  \/  N  e.  ran  O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629   {crab 2632   _Vcvv 2873    \ cdif 3235    i^i cin 3237    C_ wss 3238   class class class wbr 4125    e. cmpt 4179    Or wor 4416   Se wse 4453    We wwe 4454   Ord word 4494   Oncon0 4495   Lim wlim 4496   dom cdm 4792   ran crn 4793    |` cres 4794   "cima 4795   Fun wfun 5352    Fn wfn 5353   -->wf 5354   ` cfv 5358   iota_crio 6439  recscrecs 6529  OrdIsocoi 7371
This theorem is referenced by:  ordtypelem9  7388  ordtypelem10  7389  oiiniseg  7395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-se 4456  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-riota 6446  df-recs 6530  df-oi 7372
  Copyright terms: Public domain W3C validator