MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniorsuc Unicode version

Theorem orduniorsuc 4751
Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniorsuc  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )

Proof of Theorem orduniorsuc
StepHypRef Expression
1 orduniss 4617 . . . . . 6  |-  ( Ord 
A  ->  U. A  C_  A )
2 orduni 4715 . . . . . . . 8  |-  ( Ord 
A  ->  Ord  U. A
)
3 ordelssne 4550 . . . . . . . 8  |-  ( ( Ord  U. A  /\  Ord  A )  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A
) ) )
42, 3mpancom 651 . . . . . . 7  |-  ( Ord 
A  ->  ( U. A  e.  A  <->  ( U. A  C_  A  /\  U. A  =/=  A ) ) )
54biimprd 215 . . . . . 6  |-  ( Ord 
A  ->  ( ( U. A  C_  A  /\  U. A  =/=  A )  ->  U. A  e.  A
) )
61, 5mpand 657 . . . . 5  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  U. A  e.  A ) )
7 ordsucss 4739 . . . . 5  |-  ( Ord 
A  ->  ( U. A  e.  A  ->  suc  U. A  C_  A ) )
86, 7syld 42 . . . 4  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  suc  U. A  C_  A )
)
9 ordsucuni 4750 . . . 4  |-  ( Ord 
A  ->  A  C_  suc  U. A )
108, 9jctild 528 . . 3  |-  ( Ord 
A  ->  ( U. A  =/=  A  ->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) ) )
11 df-ne 2553 . . . 4  |-  ( A  =/=  U. A  <->  -.  A  =  U. A )
12 necom 2632 . . . 4  |-  ( A  =/=  U. A  <->  U. A  =/= 
A )
1311, 12bitr3i 243 . . 3  |-  ( -.  A  =  U. A  <->  U. A  =/=  A )
14 eqss 3307 . . 3  |-  ( A  =  suc  U. A  <->  ( A  C_  suc  U. A  /\  suc  U. A  C_  A ) )
1510, 13, 143imtr4g 262 . 2  |-  ( Ord 
A  ->  ( -.  A  =  U. A  ->  A  =  suc  U. A
) )
1615orrd 368 1  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551    C_ wss 3264   U.cuni 3958   Ord word 4522   suc csuc 4525
This theorem is referenced by:  onuniorsuci  4760  oeeulem  6781  cantnfp1lem2  7569  cantnflem1  7579  cnfcom2lem  7592  dfac12lem1  7957  dfac12lem2  7958  ttukeylem3  8325  ttukeylem5  8327  ttukeylem6  8328  ordtoplem  25900  ordcmp  25912  aomclem5  26825
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-tr 4245  df-eprel 4436  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-suc 4529
  Copyright terms: Public domain W3C validator