MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orduniss Unicode version

Theorem orduniss 4487
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniss  |-  ( Ord 
A  ->  U. A  C_  A )

Proof of Theorem orduniss
StepHypRef Expression
1 ordtr 4406 . 2  |-  ( Ord 
A  ->  Tr  A
)
2 df-tr 4114 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
31, 2sylib 188 1  |-  ( Ord 
A  ->  U. A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3152   U.cuni 3827   Tr wtr 4113   Ord word 4391
This theorem is referenced by:  orduniorsuc  4621  onfununi  6358  rankuniss  7538  r1limwun  8358  ontgval  24870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tr 4114  df-ord 4395
  Copyright terms: Public domain W3C validator