MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Unicode version

Theorem ordunisuc2 4651
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 4650 . 2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
2 ralnex 2566 . . 3  |-  ( A. x  e.  On  -.  A  =  suc  x  <->  -.  E. x  e.  On  A  =  suc  x )
3 suceloni 4620 . . . . . . . . . 10  |-  ( x  e.  On  ->  suc  x  e.  On )
4 eloni 4418 . . . . . . . . . 10  |-  ( suc  x  e.  On  ->  Ord 
suc  x )
53, 4syl 15 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  suc  x )
6 ordtri3 4444 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  suc  x )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
75, 6sylan2 460 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
87con2bid 319 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  -.  A  =  suc  x ) )
9 onnbtwn 4500 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  -.  ( x  e.  A  /\  A  e.  suc  x ) )
10 imnan 411 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  -.  A  e.  suc  x )  <->  -.  (
x  e.  A  /\  A  e.  suc  x ) )
119, 10sylibr 203 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  A  ->  -.  A  e.  suc  x ) )
1211con2d 107 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( A  e.  suc  x  ->  -.  x  e.  A
) )
13 pm2.21 100 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1412, 13syl6 29 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1514adantl 452 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
16 ax-1 5 . . . . . . . . . 10  |-  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1716a1i 10 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1815, 17jaod 369 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  ->  (
x  e.  A  ->  suc  x  e.  A ) ) )
19 eloni 4418 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  Ord  x )
20 ordtri2or 4504 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  A )  ->  ( x  e.  A  \/  A  C_  x ) )
2119, 20sylan 457 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  Ord  A )  ->  (
x  e.  A  \/  A  C_  x ) )
2221ancoms 439 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
x  e.  A  \/  A  C_  x ) )
2322orcomd 377 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  \/  x  e.  A ) )
2423adantr 451 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  \/  x  e.  A ) )
25 ordsssuc2 4497 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  <->  A  e.  suc  x ) )
2625biimpd 198 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
2726adantr 451 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
28 simpr 447 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
x  e.  A  ->  suc  x  e.  A ) )
2927, 28orim12d 811 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
( A  C_  x  \/  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3024, 29mpd 14 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  e.  suc  x  \/ 
suc  x  e.  A
) )
3130ex 423 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3218, 31impbid 183 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
338, 32bitr3d 246 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( -.  A  =  suc  x 
<->  ( x  e.  A  ->  suc  x  e.  A
) ) )
3433pm5.74da 668 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
35 impexp 433 . . . . . 6  |-  ( ( ( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
36 simpr 447 . . . . . . . 8  |-  ( ( x  e.  On  /\  x  e.  A )  ->  x  e.  A )
37 ordelon 4432 . . . . . . . . . 10  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
3837ex 423 . . . . . . . . 9  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
3938ancrd 537 . . . . . . . 8  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( x  e.  On  /\  x  e.  A ) ) )
4036, 39impbid2 195 . . . . . . 7  |-  ( Ord 
A  ->  ( (
x  e.  On  /\  x  e.  A )  <->  x  e.  A ) )
4140imbi1d 308 . . . . . 6  |-  ( Ord 
A  ->  ( (
( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4235, 41syl5bbr 250 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4334, 42bitrd 244 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4443ralbidv2 2578 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  On  -.  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
452, 44syl5bbr 250 . 2  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
461, 45bitrd 244 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   U.cuni 3843   Ord word 4407   Oncon0 4408   suc csuc 4410
This theorem is referenced by:  dflim4  4655  limsuc2  27240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414
  Copyright terms: Public domain W3C validator