MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Unicode version

Theorem ordunisuc2 4765
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 4764 . 2  |-  ( Ord 
A  ->  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x ) )
2 ralnex 2660 . . 3  |-  ( A. x  e.  On  -.  A  =  suc  x  <->  -.  E. x  e.  On  A  =  suc  x )
3 suceloni 4734 . . . . . . . . . 10  |-  ( x  e.  On  ->  suc  x  e.  On )
4 eloni 4533 . . . . . . . . . 10  |-  ( suc  x  e.  On  ->  Ord 
suc  x )
53, 4syl 16 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  suc  x )
6 ordtri3 4559 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  suc  x )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
75, 6sylan2 461 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  =  suc  x  <->  -.  ( A  e.  suc  x  \/ 
suc  x  e.  A
) ) )
87con2bid 320 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  -.  A  =  suc  x ) )
9 onnbtwn 4614 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  -.  ( x  e.  A  /\  A  e.  suc  x ) )
10 imnan 412 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  ->  -.  A  e.  suc  x )  <->  -.  (
x  e.  A  /\  A  e.  suc  x ) )
119, 10sylibr 204 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
x  e.  A  ->  -.  A  e.  suc  x ) )
1211con2d 109 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( A  e.  suc  x  ->  -.  x  e.  A
) )
13 pm2.21 102 . . . . . . . . . . 11  |-  ( -.  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1412, 13syl6 31 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1514adantl 453 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  e.  suc  x  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
16 ax-1 5 . . . . . . . . . 10  |-  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) )
1716a1i 11 . . . . . . . . 9  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( suc  x  e.  A  -> 
( x  e.  A  ->  suc  x  e.  A
) ) )
1815, 17jaod 370 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  ->  (
x  e.  A  ->  suc  x  e.  A ) ) )
19 eloni 4533 . . . . . . . . . . . . . 14  |-  ( x  e.  On  ->  Ord  x )
20 ordtri2or 4618 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  A )  ->  ( x  e.  A  \/  A  C_  x ) )
2119, 20sylan 458 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  Ord  A )  ->  (
x  e.  A  \/  A  C_  x ) )
2221ancoms 440 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
x  e.  A  \/  A  C_  x ) )
2322orcomd 378 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  \/  x  e.  A ) )
2423adantr 452 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  \/  x  e.  A ) )
25 ordsssuc2 4611 . . . . . . . . . . . . 13  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  <->  A  e.  suc  x ) )
2625biimpd 199 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
2726adantr 452 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  C_  x  ->  A  e.  suc  x ) )
28 simpr 448 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
x  e.  A  ->  suc  x  e.  A ) )
2927, 28orim12d 812 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  (
( A  C_  x  \/  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3024, 29mpd 15 . . . . . . . . 9  |-  ( ( ( Ord  A  /\  x  e.  On )  /\  ( x  e.  A  ->  suc  x  e.  A
) )  ->  ( A  e.  suc  x  \/ 
suc  x  e.  A
) )
3130ex 424 . . . . . . . 8  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( A  e.  suc  x  \/  suc  x  e.  A )
) )
3218, 31impbid 184 . . . . . . 7  |-  ( ( Ord  A  /\  x  e.  On )  ->  (
( A  e.  suc  x  \/  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
338, 32bitr3d 247 . . . . . 6  |-  ( ( Ord  A  /\  x  e.  On )  ->  ( -.  A  =  suc  x 
<->  ( x  e.  A  ->  suc  x  e.  A
) ) )
3433pm5.74da 669 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) ) )
35 impexp 434 . . . . . 6  |-  ( ( ( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
36 simpr 448 . . . . . . . 8  |-  ( ( x  e.  On  /\  x  e.  A )  ->  x  e.  A )
37 ordelon 4547 . . . . . . . . . 10  |-  ( ( Ord  A  /\  x  e.  A )  ->  x  e.  On )
3837ex 424 . . . . . . . . 9  |-  ( Ord 
A  ->  ( x  e.  A  ->  x  e.  On ) )
3938ancrd 538 . . . . . . . 8  |-  ( Ord 
A  ->  ( x  e.  A  ->  ( x  e.  On  /\  x  e.  A ) ) )
4036, 39impbid2 196 . . . . . . 7  |-  ( Ord 
A  ->  ( (
x  e.  On  /\  x  e.  A )  <->  x  e.  A ) )
4140imbi1d 309 . . . . . 6  |-  ( Ord 
A  ->  ( (
( x  e.  On  /\  x  e.  A )  ->  suc  x  e.  A )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4235, 41syl5bbr 251 . . . . 5  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  ( x  e.  A  ->  suc  x  e.  A ) )  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4334, 42bitrd 245 . . . 4  |-  ( Ord 
A  ->  ( (
x  e.  On  ->  -.  A  =  suc  x
)  <->  ( x  e.  A  ->  suc  x  e.  A ) ) )
4443ralbidv2 2672 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  On  -.  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
452, 44syl5bbr 251 . 2  |-  ( Ord 
A  ->  ( -.  E. x  e.  On  A  =  suc  x  <->  A. x  e.  A  suc  x  e.  A ) )
461, 45bitrd 245 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  A. x  e.  A  suc  x  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651    C_ wss 3264   U.cuni 3958   Ord word 4522   Oncon0 4523   suc csuc 4525
This theorem is referenced by:  dflim4  4769  limsuc2  26807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-tr 4245  df-eprel 4436  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-suc 4529
  Copyright terms: Public domain W3C validator