MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim1i Unicode version

Theorem orim1i 503
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
orim1i  |-  ( (
ph  \/  ch )  ->  ( ps  \/  ch ) )

Proof of Theorem orim1i
StepHypRef Expression
1 orim1i.1 . 2  |-  ( ph  ->  ps )
2 id 19 . 2  |-  ( ch 
->  ch )
31, 2orim12i 502 1  |-  ( (
ph  \/  ch )  ->  ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357
This theorem is referenced by:  19.34  1652  r19.45av  2710  nnm1nn0  10021  xrge0iifhom  23334  expdioph  27219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator