MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2 Unicode version

Theorem orim2 814
Description: Axiom *1.6 (Sum) of [WhiteheadRussell] p. 97. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
orim2  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )

Proof of Theorem orim2
StepHypRef Expression
1 id 19 . 2  |-  ( ( ps  ->  ch )  ->  ( ps  ->  ch ) )
21orim2d 813 1  |-  ( ( ps  ->  ch )  ->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357
This theorem is referenced by:  pm2.81  824  rb-ax1  1507
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator