MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orim2i Unicode version

Theorem orim2i 504
Description: Introduce disjunct to both sides of an implication. (Contributed by NM, 6-Jun-1994.)
Hypothesis
Ref Expression
orim1i.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
orim2i  |-  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) )

Proof of Theorem orim2i
StepHypRef Expression
1 id 19 . 2  |-  ( ch 
->  ch )
2 orim1i.1 . 2  |-  ( ph  ->  ps )
31, 2orim12i 502 1  |-  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357
This theorem is referenced by:  orbi2i  505  pm1.5  508  pm2.3  555  r19.44av  2709  elsuci  4474  trsuc2OLD  4493  ordnbtwn  4499  elpwunsn  4584  infxpenlem  7657  fin1a2lem12  8053  fin1a2  8057  entri3  8197  zindd  10129  limccnp  19257  ex-natded5.7-2  20815  gxsuc  20955  chirredi  22990  meran1  24922  dissym1  24932  ordtoplem  24946  ordcmp  24958  nopsthph  25098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator