MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orri Unicode version

Theorem orri 365
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
orri.1  |-  ( -. 
ph  ->  ps )
Assertion
Ref Expression
orri  |-  ( ph  \/  ps )

Proof of Theorem orri
StepHypRef Expression
1 orri.1 . 2  |-  ( -. 
ph  ->  ps )
2 df-or 359 . 2  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
31, 2mpbir 200 1  |-  ( ph  \/  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem is referenced by:  orci  379  olci  380  pm2.25  393  exmid  404  pm2.13  407  pm3.12  486  pm5.11  854  pm5.12  855  pm5.14  856  pm5.15  859  pm5.55  867  pm5.54  870  rb-ax2  1508  rb-ax3  1509  rb-ax4  1510  exmo  2201  abvor0  3485  ifeqor  3615  fvbr0  5565  letrii  8960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359
  Copyright terms: Public domain W3C validator