Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Unicode version

Theorem osumclN 30156
Description: Closure of orthogonal sum. If  X and  Y are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p  |-  .+  =  ( + P `  K
)
osumcl.o  |-  ._|_  =  ( _|_ P `  K
)
osumcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
osumclN  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  e.  C )

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  K  e.  HL )
2 simpl2 959 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  X  e.  C )
3 eqid 2283 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 osumcl.c . . . . 5  |-  C  =  ( PSubCl `  K )
53, 4psubclssatN 30130 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
61, 2, 5syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  X  C_  ( Atoms `  K
) )
7 simpl3 960 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  Y  e.  C )
83, 4psubclssatN 30130 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
91, 7, 8syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  Y  C_  ( Atoms `  K
) )
10 osumcl.p . . . 4  |-  .+  =  ( + P `  K
)
113, 10paddssat 30003 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
121, 6, 9, 11syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  C_  ( Atoms `  K ) )
13 simpll1 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  K  e.  HL )
14 oveq1 5865 . . . . . 6  |-  ( X  =  (/)  ->  ( X 
.+  Y )  =  ( (/)  .+  Y ) )
153, 10padd02 30001 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  C_  ( Atoms `  K
) )  ->  ( (/)  .+  Y )  =  Y )
161, 9, 15syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( (/)  .+  Y )  =  Y )
1714, 16sylan9eqr 2337 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  ( X 
.+  Y )  =  Y )
18 simpll3 996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  Y  e.  C )
1917, 18eqeltrd 2357 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  ( X 
.+  Y )  e.  C )
20 osumcl.o . . . . 5  |-  ._|_  =  ( _|_ P `  K
)
2120, 4psubcli2N 30128 . . . 4  |-  ( ( K  e.  HL  /\  ( X  .+  Y )  e.  C )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  =  ( X  .+  Y
) )
2213, 19, 21syl2anc 642 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  ( X 
.+  Y ) )
2310, 20, 4osumcllem11N 30155 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
2423anassrs 629 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =/=  (/) )  ->  ( X 
.+  Y )  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )
2524eqcomd 2288 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =/=  (/) )  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  ( X 
.+  Y ) )
2622, 25pm2.61dane 2524 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  =  ( X  .+  Y
) )
273, 20, 4ispsubclN 30126 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  C  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  =  ( X  .+  Y ) ) ) )
281, 27syl 15 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( ( X  .+  Y )  e.  C  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  =  ( X 
.+  Y ) ) ) )
2912, 26, 28mpbir2and 888 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984   _|_ PcpolN 30091   PSubClcpscN 30123
This theorem is referenced by:  pmapojoinN  30157  pexmidN  30158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-polarityN 30092  df-psubclN 30124
  Copyright terms: Public domain W3C validator