Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Unicode version

Theorem osumclN 30778
Description: Closure of orthogonal sum. If  X and  Y are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p  |-  .+  =  ( + P `  K
)
osumcl.o  |-  ._|_  =  ( _|_ P `  K
)
osumcl.c  |-  C  =  ( PSubCl `  K )
Assertion
Ref Expression
osumclN  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  e.  C )

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  K  e.  HL )
2 simpl2 959 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  X  e.  C )
3 eqid 2296 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 osumcl.c . . . . 5  |-  C  =  ( PSubCl `  K )
53, 4psubclssatN 30752 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
61, 2, 5syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  X  C_  ( Atoms `  K
) )
7 simpl3 960 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  Y  e.  C )
83, 4psubclssatN 30752 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
91, 7, 8syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  ->  Y  C_  ( Atoms `  K
) )
10 osumcl.p . . . 4  |-  .+  =  ( + P `  K
)
113, 10paddssat 30625 . . 3  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( X  .+  Y )  C_  ( Atoms `  K ) )
121, 6, 9, 11syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  C_  ( Atoms `  K ) )
13 simpll1 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  K  e.  HL )
14 oveq1 5881 . . . . . 6  |-  ( X  =  (/)  ->  ( X 
.+  Y )  =  ( (/)  .+  Y ) )
153, 10padd02 30623 . . . . . . 7  |-  ( ( K  e.  HL  /\  Y  C_  ( Atoms `  K
) )  ->  ( (/)  .+  Y )  =  Y )
161, 9, 15syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( (/)  .+  Y )  =  Y )
1714, 16sylan9eqr 2350 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  ( X 
.+  Y )  =  Y )
18 simpll3 996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  Y  e.  C )
1917, 18eqeltrd 2370 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  ( X 
.+  Y )  e.  C )
20 osumcl.o . . . . 5  |-  ._|_  =  ( _|_ P `  K
)
2120, 4psubcli2N 30750 . . . 4  |-  ( ( K  e.  HL  /\  ( X  .+  Y )  e.  C )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  =  ( X  .+  Y
) )
2213, 19, 21syl2anc 642 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =  (/) )  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  ( X 
.+  Y ) )
2310, 20, 4osumcllem11N 30777 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/) ) )  -> 
( X  .+  Y
)  =  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) ) )
2423anassrs 629 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =/=  (/) )  ->  ( X 
.+  Y )  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) ) )
2524eqcomd 2301 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  /\  X  =/=  (/) )  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  Y ) ) )  =  ( X 
.+  Y ) )
2622, 25pm2.61dane 2537 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )  =  ( X  .+  Y
) )
273, 20, 4ispsubclN 30748 . . 3  |-  ( K  e.  HL  ->  (
( X  .+  Y
)  e.  C  <->  ( ( X  .+  Y )  C_  ( Atoms `  K )  /\  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  =  ( X  .+  Y ) ) ) )
281, 27syl 15 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( ( X  .+  Y )  e.  C  <->  ( ( X  .+  Y
)  C_  ( Atoms `  K )  /\  (  ._|_  `  (  ._|_  `  ( X  .+  Y ) ) )  =  ( X 
.+  Y ) ) ) )
2912, 26, 28mpbir2and 888 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  (  ._|_  `  Y ) )  -> 
( X  .+  Y
)  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   (/)c0 3468   ` cfv 5271  (class class class)co 5874   Atomscatm 30075   HLchlt 30162   + Pcpadd 30606   _|_ PcpolN 30713   PSubClcpscN 30745
This theorem is referenced by:  pmapojoinN  30779  pexmidN  30780
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-polarityN 30714  df-psubclN 30746
  Copyright terms: Public domain W3C validator