Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem10N Unicode version

Theorem osumcllem10N 30154
Description: Lemma for osumclN 30156. Contradict osumcllem9N 30153. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( + P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_ P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem10N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =/=  X
)

Proof of Theorem osumcllem10N
StepHypRef Expression
1 simp11 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  K  e.  HL )
2 simp2 956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  A
)
32snssd 3760 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  { p }  C_  A )
4 simp12 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  A
)
5 osumcllem.a . . . . . 6  |-  A  =  ( Atoms `  K )
6 osumcllem.p . . . . . 6  |-  .+  =  ( + P `  K
)
75, 6sspadd2 30005 . . . . 5  |-  ( ( K  e.  HL  /\  { p }  C_  A  /\  X  C_  A )  ->  { p }  C_  ( X  .+  {
p } ) )
81, 3, 4, 7syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  { p }  C_  ( X  .+  {
p } ) )
9 vex 2791 . . . . 5  |-  p  e. 
_V
109snss 3748 . . . 4  |-  ( p  e.  ( X  .+  { p } )  <->  { p }  C_  ( X  .+  { p } ) )
118, 10sylibr 203 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  ( X  .+  { p } ) )
12 osumcllem.m . . 3  |-  M  =  ( X  .+  {
p } )
1311, 12syl6eleqr 2374 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  p  e.  M
)
14 simp3 957 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  -.  p  e.  ( X  .+  Y ) )
155, 6sspadd1 30004 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  ->  X  C_  ( X  .+  Y
) )
16153ad2ant1 976 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  X  C_  ( X  .+  Y ) )
1716sseld 3179 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  ( p  e.  X  ->  p  e.  ( X  .+  Y ) ) )
1814, 17mtod 168 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  -.  p  e.  X )
19 nelne1 2535 . 2  |-  ( ( p  e.  M  /\  -.  p  e.  X
)  ->  M  =/=  X )
2013, 18, 19syl2anc 642 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  p  e.  A  /\  -.  p  e.  ( X  .+  Y ) )  ->  M  =/=  X
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   {csn 3640   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   HLchlt 29540   + Pcpadd 29984   _|_ PcpolN 30091   PSubClcpscN 30123
This theorem is referenced by:  osumcllem11N  30155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-padd 29985
  Copyright terms: Public domain W3C validator