Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem7N Structured version   Unicode version

Theorem osumcllem7N 30759
Description: Lemma for osumclN 30764. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l  |-  .<_  =  ( le `  K )
osumcllem.j  |-  .\/  =  ( join `  K )
osumcllem.a  |-  A  =  ( Atoms `  K )
osumcllem.p  |-  .+  =  ( + P `  K
)
osumcllem.o  |-  ._|_  =  ( _|_ P `  K
)
osumcllem.c  |-  C  =  ( PSubCl `  K )
osumcllem.m  |-  M  =  ( X  .+  {
p } )
osumcllem.u  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
Assertion
Ref Expression
osumcllem7N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  p  e.  ( X  .+  Y
) )
Distinct variable groups:    A, q    K, q    M, q    ._|_ , q    .+ , q    X, q    Y, q    q, p
Allowed substitution hints:    A( p)    C( q, p)    .+ ( p)    U( q, p)    .\/ ( q, p)    K( p)    .<_ ( q, p)    M( p)    ._|_ ( p)    X( p)    Y( p)

Proof of Theorem osumcllem7N
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simp11 987 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  K  e.  HL )
2 hllat 30161 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  K  e.  Lat )
4 simp12 988 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  X  C_  A )
5 simp23 992 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  p  e.  A )
6 simp22 991 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  X  =/=  (/) )
7 inss2 3562 . . . . . 6  |-  ( Y  i^i  M )  C_  M
87sseli 3344 . . . . 5  |-  ( q  e.  ( Y  i^i  M )  ->  q  e.  M )
983ad2ant3 980 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  q  e.  M )
10 osumcllem.m . . . 4  |-  M  =  ( X  .+  {
p } )
119, 10syl6eleq 2526 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  q  e.  ( X  .+  {
p } ) )
12 osumcllem.l . . . 4  |-  .<_  =  ( le `  K )
13 osumcllem.j . . . 4  |-  .\/  =  ( join `  K )
14 osumcllem.a . . . 4  |-  A  =  ( Atoms `  K )
15 osumcllem.p . . . 4  |-  .+  =  ( + P `  K
)
1612, 13, 14, 15elpaddatiN 30602 . . 3  |-  ( ( ( K  e.  Lat  /\  X  C_  A  /\  p  e.  A )  /\  ( X  =/=  (/)  /\  q  e.  ( X  .+  {
p } ) ) )  ->  E. r  e.  X  q  .<_  ( r  .\/  p ) )
173, 4, 5, 6, 11, 16syl32anc 1192 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  E. r  e.  X  q  .<_  ( r  .\/  p ) )
18 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A ) )
19 simp121 1089 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  X  C_  (  ._|_  `  Y ) )
20 simp123 1091 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  p  e.  A )
21 simp2 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  r  e.  X )
22 inss1 3561 . . . . 5  |-  ( Y  i^i  M )  C_  Y
23 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  q  e.  ( Y  i^i  M
) )
2422, 23sseldi 3346 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  q  e.  Y )
25 simp3 959 . . . 4  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  q  .<_  ( r  .\/  p
) )
26 osumcllem.o . . . . 5  |-  ._|_  =  ( _|_ P `  K
)
27 osumcllem.c . . . . 5  |-  C  =  ( PSubCl `  K )
28 osumcllem.u . . . . 5  |-  U  =  (  ._|_  `  (  ._|_  `  ( X  .+  Y
) ) )
2912, 13, 14, 15, 26, 27, 10, 28osumcllem6N 30758 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  p  e.  A )  /\  (
r  e.  X  /\  q  e.  Y  /\  q  .<_  ( r  .\/  p ) ) )  ->  p  e.  ( X  .+  Y ) )
3018, 19, 20, 21, 24, 25, 29syl123anc 1201 . . 3  |-  ( ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A
)  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  /\  r  e.  X  /\  q  .<_  ( r  .\/  p
) )  ->  p  e.  ( X  .+  Y
) )
3130rexlimdv3a 2832 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  ( E. r  e.  X  q  .<_  ( r  .\/  p )  ->  p  e.  ( X  .+  Y
) ) )
3217, 31mpd 15 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  Y  C_  A )  /\  ( X  C_  (  ._|_  `  Y )  /\  X  =/=  (/)  /\  p  e.  A )  /\  q  e.  ( Y  i^i  M
) )  ->  p  e.  ( X  .+  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706    i^i cin 3319    C_ wss 3320   (/)c0 3628   {csn 3814   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   lecple 13536   joincjn 14401   Latclat 14474   Atomscatm 30061   HLchlt 30148   + Pcpadd 30592   _|_ PcpolN 30699   PSubClcpscN 30731
This theorem is referenced by:  osumcllem8N  30760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-pmap 30301  df-padd 30593  df-polarityN 30700
  Copyright terms: Public domain W3C validator