Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot2ndg Structured version   Unicode version

Theorem ot2ndg 6365
 Description: Extract the second member of an ordered triple. (See ot1stg 6364 comment.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot2ndg

Proof of Theorem ot2ndg
StepHypRef Expression
1 df-ot 3826 . . . . . 6
21fveq2i 5734 . . . . 5
3 opex 4430 . . . . . 6
4 op1stg 6362 . . . . . 6
53, 4mpan 653 . . . . 5
62, 5syl5eq 2482 . . . 4
76fveq2d 5735 . . 3
8 op2ndg 6363 . . 3
97, 8sylan9eqr 2492 . 2
1093impa 1149 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726  cvv 2958  cop 3819  cotp 3820  cfv 5457  c1st 6350  c2nd 6351 This theorem is referenced by:  splval  11785  mamufval  27434  el2xptp0  28076  oteqimp  28078  el2spthonot0  28403  usg2spot2nb  28528  usgreg2spot  28530  2spotmdisj  28531  mapdhval  32596  hdmap1val  32671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-ot 3826  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fv 5465  df-1st 6352  df-2nd 6353
 Copyright terms: Public domain W3C validator