MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ot3rdg Unicode version

Theorem ot3rdg 6136
Description: Extract the third member of an ordered triple. (See ot1stg 6134 comment.) (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
ot3rdg  |-  ( C  e.  V  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )

Proof of Theorem ot3rdg
StepHypRef Expression
1 df-ot 3650 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
21fveq2i 5528 . 2  |-  ( 2nd `  <. A ,  B ,  C >. )  =  ( 2nd `  <. <. A ,  B >. ,  C >. )
3 opex 4237 . . 3  |-  <. A ,  B >.  e.  _V
4 op2ndg 6133 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  V )  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
53, 4mpan 651 . 2  |-  ( C  e.  V  ->  ( 2nd `  <. <. A ,  B >. ,  C >. )  =  C )
62, 5syl5eq 2327 1  |-  ( C  e.  V  ->  ( 2nd `  <. A ,  B ,  C >. )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   <.cotp 3644   ` cfv 5255   2ndc2nd 6121
This theorem is referenced by:  splval  11466  splcl  11467  ida2  13891  coa2  13901  mamufval  27443  mapdhval  31914  hdmap1val  31989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-ot 3650  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-2nd 6123
  Copyright terms: Public domain W3C validator