Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq1 Structured version   Unicode version

Theorem oteq1 3994
 Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq1

Proof of Theorem oteq1
StepHypRef Expression
1 opeq1 3985 . . 3
21opeq1d 3991 . 2
3 df-ot 3825 . 2
4 df-ot 3825 . 2
52, 3, 43eqtr4g 2494 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653  cop 3818  cotp 3819 This theorem is referenced by:  oteq1d  3997  efgi  15352  efgtf  15355  efgtval  15356  otiunsndisj  28067  otiunsndisjX  28068  mapdh9a  32589  mapdh9aOLDN  32590  hdmapval2  32634 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-ot 3825
 Copyright terms: Public domain W3C validator