MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq1d Unicode version

Theorem oteq1d 3938
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
oteq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
oteq1d  |-  ( ph  -> 
<. A ,  C ,  D >.  =  <. B ,  C ,  D >. )

Proof of Theorem oteq1d
StepHypRef Expression
1 oteq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 oteq1 3935 . 2  |-  ( A  =  B  ->  <. A ,  C ,  D >.  = 
<. B ,  C ,  D >. )
31, 2syl 16 1  |-  ( ph  -> 
<. A ,  C ,  D >.  =  <. B ,  C ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649   <.cotp 3761
This theorem is referenced by:  oteq123d  3941  hdmapfval  31945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-ot 3767
  Copyright terms: Public domain W3C validator