MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq2 Unicode version

Theorem oteq2 3806
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3797 . . 3  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
21opeq1d 3802 . 2  |-  ( A  =  B  ->  <. <. C ,  A >. ,  D >.  = 
<. <. C ,  B >. ,  D >. )
3 df-ot 3650 . 2  |-  <. C ,  A ,  D >.  = 
<. <. C ,  A >. ,  D >.
4 df-ot 3650 . 2  |-  <. C ,  B ,  D >.  = 
<. <. C ,  B >. ,  D >.
52, 3, 43eqtr4g 2340 1  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   <.cop 3643   <.cotp 3644
This theorem is referenced by:  oteq2d  3809  efgi  15028  efgtf  15031  efgtval  15032  mapdh9a  31980  mapdh9aOLDN  31981  hdmap1eulem  32014  hdmap1eulemOLDN  32015  hdmapffval  32019  hdmapfval  32020  hdmapval2  32025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-ot 3650
  Copyright terms: Public domain W3C validator