Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq2d Structured version   Unicode version

Theorem oteq2d 3999
 Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
oteq1d.1
Assertion
Ref Expression
oteq2d

Proof of Theorem oteq2d
StepHypRef Expression
1 oteq1d.1 . 2
2 oteq2 3996 . 2
31, 2syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653  cotp 3820 This theorem is referenced by:  oteq123d  4001  mapdh9a  32662  hdmap1eulem  32696  hdmapffval  32701  hdmapfval  32702  hdmapval2  32707 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-ot 3826
 Copyright terms: Public domain W3C validator