MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Unicode version

Theorem otex 4254
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex  |-  <. A ,  B ,  C >.  e. 
_V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 3663 . 2  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opex 4253 . 2  |-  <. <. A ,  B >. ,  C >.  e. 
_V
31, 2eqeltri 2366 1  |-  <. A ,  B ,  C >.  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 1696   _Vcvv 2801   <.cop 3656   <.cotp 3657
This theorem is referenced by:  euotd  4283  splval  11482  splcl  11483  idaval  13906  idaf  13911  eldmcoa  13913  coaval  13916  mamufval  27546  mapdhval  32536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-ot 3663
  Copyright terms: Public domain W3C validator