MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Unicode version

Theorem otex 4238
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex  |-  <. A ,  B ,  C >.  e. 
_V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 3650 . 2  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opex 4237 . 2  |-  <. <. A ,  B >. ,  C >.  e. 
_V
31, 2eqeltri 2353 1  |-  <. A ,  B ,  C >.  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788   <.cop 3643   <.cotp 3644
This theorem is referenced by:  euotd  4267  splval  11466  splcl  11467  idaval  13890  idaf  13895  eldmcoa  13897  coaval  13900  mamufval  27443  mapdhval  31914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-ot 3650
  Copyright terms: Public domain W3C validator