MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otex Structured version   Unicode version

Theorem otex 4428
Description: An ordered triple of classes is a set. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
otex  |-  <. A ,  B ,  C >.  e. 
_V

Proof of Theorem otex
StepHypRef Expression
1 df-ot 3824 . 2  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opex 4427 . 2  |-  <. <. A ,  B >. ,  C >.  e. 
_V
31, 2eqeltri 2506 1  |-  <. A ,  B ,  C >.  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   _Vcvv 2956   <.cop 3817   <.cotp 3818
This theorem is referenced by:  euotd  4457  splval  11780  splcl  11781  idaval  14213  idaf  14218  eldmcoa  14220  coaval  14223  mamufval  27420  usgreghash2spotv  28455  mapdhval  32522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-ot 3824
  Copyright terms: Public domain W3C validator