MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otth Unicode version

Theorem otth 4266
Description: Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)

Proof of Theorem otth
StepHypRef Expression
1 df-ot 3663 . . 3  |-  <. A ,  B ,  R >.  = 
<. <. A ,  B >. ,  R >.
2 df-ot 3663 . . 3  |-  <. C ,  D ,  S >.  = 
<. <. C ,  D >. ,  S >.
31, 2eqeq12i 2309 . 2  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >. )
4 otth.1 . . 3  |-  A  e. 
_V
5 otth.2 . . 3  |-  B  e. 
_V
6 otth.3 . . 3  |-  R  e. 
_V
74, 5, 6otth2 4265 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
83, 7bitri 240 1  |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801   <.cop 3656   <.cotp 3657
This theorem is referenced by:  euotd  4283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-ot 3663
  Copyright terms: Public domain W3C validator