MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otth2 Unicode version

Theorem otth2 4328
Description: Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
otth.1  |-  A  e. 
_V
otth.2  |-  B  e. 
_V
otth.3  |-  R  e. 
_V
Assertion
Ref Expression
otth2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )

Proof of Theorem otth2
StepHypRef Expression
1 otth.1 . . . 4  |-  A  e. 
_V
2 otth.2 . . . 4  |-  B  e. 
_V
31, 2opth 4324 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
43anbi1i 676 . 2  |-  ( (
<. A ,  B >.  = 
<. C ,  D >.  /\  R  =  S )  <-> 
( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
5 opex 4316 . . 3  |-  <. A ,  B >.  e.  _V
6 otth.3 . . 3  |-  R  e. 
_V
75, 6opth 4324 . 2  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( <. A ,  B >.  =  <. C ,  D >.  /\  R  =  S ) )
8 df-3an 936 . 2  |-  ( ( A  =  C  /\  B  =  D  /\  R  =  S )  <->  ( ( A  =  C  /\  B  =  D )  /\  R  =  S ) )
94, 7, 83bitr4i 268 1  |-  ( <. <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   _Vcvv 2864   <.cop 3719
This theorem is referenced by:  otth  4329  oprabid  5966  eloprabga  6018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725
  Copyright terms: Public domain W3C validator