MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ottpos Unicode version

Theorem ottpos 6418
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottpos  |-  ( C  e.  V  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )

Proof of Theorem ottpos
StepHypRef Expression
1 brtpos 6417 . . 3  |-  ( C  e.  V  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
2 df-br 4147 . . 3  |-  ( <. A ,  B >.tpos  F C  <->  <. <. A ,  B >. ,  C >.  e. tpos  F
)
3 df-br 4147 . . 3  |-  ( <. B ,  A >. F C  <->  <. <. B ,  A >. ,  C >.  e.  F
)
41, 2, 33bitr3g 279 . 2  |-  ( C  e.  V  ->  ( <. <. A ,  B >. ,  C >.  e. tpos  F  <->  <. <. B ,  A >. ,  C >.  e.  F
) )
5 df-ot 3760 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
65eleq1i 2443 . 2  |-  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. <. A ,  B >. ,  C >.  e. tpos  F )
7 df-ot 3760 . . 3  |-  <. B ,  A ,  C >.  = 
<. <. B ,  A >. ,  C >.
87eleq1i 2443 . 2  |-  ( <. B ,  A ,  C >.  e.  F  <->  <. <. B ,  A >. ,  C >.  e.  F )
94, 6, 83bitr4g 280 1  |-  ( C  e.  V  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717   <.cop 3753   <.cotp 3754   class class class wbr 4146  tpos ctpos 6407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-ot 3760  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-fv 5395  df-tpos 6408
  Copyright terms: Public domain W3C validator