MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ottpos Unicode version

Theorem ottpos 6244
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottpos  |-  ( C  e.  V  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )

Proof of Theorem ottpos
StepHypRef Expression
1 brtpos 6243 . . 3  |-  ( C  e.  V  ->  ( <. A ,  B >.tpos  F C  <->  <. B ,  A >. F C ) )
2 df-br 4024 . . 3  |-  ( <. A ,  B >.tpos  F C  <->  <. <. A ,  B >. ,  C >.  e. tpos  F
)
3 df-br 4024 . . 3  |-  ( <. B ,  A >. F C  <->  <. <. B ,  A >. ,  C >.  e.  F
)
41, 2, 33bitr3g 278 . 2  |-  ( C  e.  V  ->  ( <. <. A ,  B >. ,  C >.  e. tpos  F  <->  <. <. B ,  A >. ,  C >.  e.  F
) )
5 df-ot 3650 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
65eleq1i 2346 . 2  |-  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. <. A ,  B >. ,  C >.  e. tpos  F )
7 df-ot 3650 . . 3  |-  <. B ,  A ,  C >.  = 
<. <. B ,  A >. ,  C >.
87eleq1i 2346 . 2  |-  ( <. B ,  A ,  C >.  e.  F  <->  <. <. B ,  A >. ,  C >.  e.  F )
94, 6, 83bitr4g 279 1  |-  ( C  e.  V  ->  ( <. A ,  B ,  C >.  e. tpos  F  <->  <. B ,  A ,  C >.  e.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1684   <.cop 3643   <.cotp 3644   class class class wbr 4023  tpos ctpos 6233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-ot 3650  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6234
  Copyright terms: Public domain W3C validator