Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideofeq Structured version   Unicode version

Theorem outsideofeq 26064
Description: Uniqueness law for OutsideOf. Analog of segconeq 25944. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideofeq  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )

Proof of Theorem outsideofeq
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  N  e.  NN )
2 simp21 990 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
3 simp32 994 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  X  e.  ( EE `  N
) )
4 simp22 991 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  R  e.  ( EE `  N
) )
5 broutsideof2 26056 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  X  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  -> 
( AOutsideOf <. X ,  R >.  <-> 
( X  =/=  A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) ) ) )
61, 2, 3, 4, 5syl13anc 1186 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( AOutsideOf
<. X ,  R >.  <->  ( X  =/=  A  /\  R  =/=  A  /\  ( X 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) ) ) )
76anbi1d 686 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr
<. B ,  C >. )  <-> 
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. ) ) )
8 simp33 995 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  Y  e.  ( EE `  N
) )
9 broutsideof2 26056 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  Y  e.  ( EE `  N )  /\  R  e.  ( EE `  N
) ) )  -> 
( AOutsideOf <. Y ,  R >.  <-> 
( Y  =/=  A  /\  R  =/=  A  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) ) )
101, 2, 8, 4, 9syl13anc 1186 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  ( AOutsideOf
<. Y ,  R >.  <->  ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) ) )
1110anbi1d 686 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( AOutsideOf <. Y ,  R >.  /\  <. A ,  Y >.Cgr
<. B ,  C >. )  <-> 
( ( Y  =/= 
A  /\  R  =/=  A  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )
127, 11anbi12d 692 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  <->  ( ( ( X  =/=  A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) ) )
13 simpll3 998 . . . . . . 7  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )
14 simprl3 1004 . . . . . . 7  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )
1513, 14jca 519 . . . . . 6  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  ( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) )
1615adantl 453 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) ) )
17 simpll2 997 . . . . . 6  |-  ( ( ( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  R  =/=  A )
1817adantl 453 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  R  =/=  A )
19 simp23 992 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
20 simp31 993 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
21 simprlr 740 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. B ,  C >. )
22 simprrr 742 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  Y >.Cgr <. B ,  C >. )
231, 2, 3, 2, 8, 19, 20, 21, 22cgrtr3and 25929 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
2416, 18, 23jca32 522 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr
<. A ,  Y >. ) ) )
25 simprll 739 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  R >. )
26 simprlr 740 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  R >. )
27 simprrr 742 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
28 midofsegid 26038 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N ) ) )  ->  ( ( X 
Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
291, 2, 4, 3, 8, 28syl122anc 1193 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\ 
<. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
3029adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( ( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >.  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) )
3125, 26, 27, 30mp3and 1282 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
3231exp32 589 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  Y  Btwn  <. A ,  R >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
33 simprlr 740 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  R >. )
34 simprll 739 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  X >. )
351, 2, 8, 4, 3, 33, 34btwnexchand 25960 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  Btwn  <. A ,  X >. )
36 simprrr 742 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
371, 2, 3, 8, 35, 36endofsegidand 26020 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
3837exp32 589 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( R  Btwn  <. A ,  X >.  /\  Y  Btwn  <. A ,  R >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
39 simprll 739 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  R >. )
40 simprlr 740 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  Y >. )
411, 2, 3, 4, 8, 39, 40btwnexchand 25960 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  Btwn  <. A ,  Y >. )
42 simprrr 742 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
431, 2, 3, 2, 8, 42cgrcomand 25925 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  <. A ,  Y >.Cgr <. A ,  X >. )
441, 2, 8, 3, 41, 43endofsegidand 26020 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  Y  =  X )
4544eqcomd 2441 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
4645exp32 589 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( X  Btwn  <. A ,  R >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
47 simprr 734 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  X  Btwn  <. A ,  Y >. )
48 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
4948adantl 453 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
501, 2, 3, 2, 8, 49cgrcomand 25925 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  <. A ,  Y >.Cgr <. A ,  X >. )
511, 2, 8, 3, 47, 50endofsegidand 26020 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  Y  =  X )
5251eqcomd 2441 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  X  Btwn  <. A ,  Y >. ) )  ->  X  =  Y )
5352expr 599 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( X  Btwn  <. A ,  Y >.  ->  X  =  Y ) )
54 simprr 734 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  Y  Btwn  <. A ,  X >. )
55 simplrr 738 . . . . . . . . . . 11  |-  ( ( ( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
5655adantl 453 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  <. A ,  X >.Cgr <. A ,  Y >. )
571, 2, 3, 8, 54, 56endofsegidand 26020 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) )  /\  Y  Btwn  <. A ,  X >. ) )  ->  X  =  Y )
5857expr 599 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( Y  Btwn  <. A ,  X >.  ->  X  =  Y ) )
59 simprrl 741 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  =/=  A )
6059necomd 2687 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  A  =/=  R )
61 simprll 739 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  X >. )
62 simprlr 740 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  R  Btwn  <. A ,  Y >. )
63 btwnconn1 26035 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N ) )  /\  ( X  e.  ( EE `  N )  /\  Y  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
641, 2, 4, 3, 8, 63syl122anc 1193 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( A  =/=  R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
6564adantr 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( ( A  =/= 
R  /\  R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) ) )
6660, 61, 62, 65mp3and 1282 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  -> 
( X  Btwn  <. A ,  Y >.  \/  Y  Btwn  <. A ,  X >. ) )
6753, 58, 66mpjaod 371 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  /\  ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. ) ) )  ->  X  =  Y )
6867exp32 589 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( R  Btwn  <. A ,  X >.  /\  R  Btwn  <. A ,  Y >. )  ->  ( ( R  =/=  A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
6932, 38, 46, 68ccased 914 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  -> 
( ( R  =/= 
A  /\  <. A ,  X >.Cgr <. A ,  Y >. )  ->  X  =  Y ) ) )
7069imp32 423 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. )  /\  ( Y  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  ( R  =/=  A  /\  <. A ,  X >.Cgr
<. A ,  Y >. ) ) )  ->  X  =  Y )
7124, 70syldan 457 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  /\  (
( ( X  =/= 
A  /\  R  =/=  A  /\  ( X  Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) ) )  ->  X  =  Y )
7271ex 424 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( ( X  =/=  A  /\  R  =/=  A  /\  ( X 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  X >. ) )  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( ( Y  =/=  A  /\  R  =/=  A  /\  ( Y 
Btwn  <. A ,  R >.  \/  R  Btwn  <. A ,  Y >. ) )  /\  <. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )
7312, 72sylbid 207 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  R  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  X  e.  ( EE `  N
)  /\  Y  e.  ( EE `  N ) ) )  ->  (
( ( AOutsideOf <. X ,  R >.  /\  <. A ,  X >.Cgr <. B ,  C >. )  /\  ( AOutsideOf <. Y ,  R >.  /\ 
<. A ,  Y >.Cgr <. B ,  C >. ) )  ->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   <.cop 3817   class class class wbr 4212   ` cfv 5454   NNcn 10000   EEcee 25827    Btwn cbtwn 25828  Cgrccgr 25829  OutsideOfcoutsideof 26053
This theorem is referenced by:  outsideofeu  26065  outsidele  26066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-ee 25830  df-btwn 25831  df-cgr 25832  df-ofs 25917  df-ifs 25973  df-cgr3 25974  df-colinear 25975  df-fs 25976  df-outsideof 26054
  Copyright terms: Public domain W3C validator