Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideoftr Structured version   Unicode version

Theorem outsideoftr 26063
Description: Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideoftr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  ->  POutsideOf <. A ,  C >. ) )

Proof of Theorem outsideoftr
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  A  =/=  P )
2 simplr 732 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  B  =/=  P )
3 simprr 734 . . . . 5  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  ->  C  =/=  P )
41, 2, 33jca 1134 . . . 4  |-  ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  -> 
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )
5 simplr1 999 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  A  =/=  P
)
6 simplr3 1001 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  C  =/=  P
)
7 df-3an 938 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. )  <->  ( (
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. )  /\  B  Btwn  <. P ,  C >. ) )
8 simp1 957 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  N  e.  NN )
9 simp3r 986 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  P  e.  ( EE `  N ) )
10 simp2l 983 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
11 simp2r 984 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
12 simp3l 985 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
13 simpr2 964 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  A  Btwn  <. P ,  B >. )
14 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  C >. )
158, 9, 10, 11, 12, 13, 14btwnexchand 25960 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  ->  A  Btwn  <. P ,  C >. )
1615orcd 382 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >.  /\  B  Btwn  <. P ,  C >. ) )  -> 
( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
177, 16sylan2br 463 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
1817expr 599 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( B  Btwn  <. P ,  C >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
19 simprlr 740 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  A  Btwn  <. P ,  B >. )
20 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  B >. )
21 btwnconn3 26037 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( ( A 
Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
228, 9, 10, 12, 11, 21syl122anc 1193 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( A 
Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2322adantr 452 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( ( A  Btwn  <. P ,  B >.  /\  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2419, 20, 23mp2and 661 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  A  Btwn  <. P ,  B >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
2524expr 599 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( C  Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2618, 25jaod 370 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  A  Btwn  <. P ,  B >. ) )  ->  ( ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
2726expr 599 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  ( A  Btwn  <. P ,  B >.  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
28 simpll2 997 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. )  ->  B  =/=  P )
2928adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  =/=  P )
3029necomd 2687 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  P  =/=  B )
31 simprlr 740 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  A >. )
32 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  B  Btwn  <. P ,  C >. )
33 btwnconn1 26035 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
348, 9, 11, 10, 12, 33syl122anc 1193 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
3534adantr 452 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( ( P  =/=  B  /\  B  Btwn  <. P ,  A >.  /\  B  Btwn  <. P ,  C >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
3630, 31, 32, 35mp3and 1282 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  B  Btwn  <. P ,  C >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
3736expr 599 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( B  Btwn  <. P ,  C >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
38 df-3an 938 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. )  <->  ( (
( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. )  /\  C  Btwn  <. P ,  B >. ) )
39 simpr3 965 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  B >. )
40 simpr2 964 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  B  Btwn  <. P ,  A >. )
418, 9, 12, 11, 10, 39, 40btwnexchand 25960 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  ->  C  Btwn  <. P ,  A >. )
4241olcd 383 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >.  /\  C  Btwn  <. P ,  B >. ) )  -> 
( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
4338, 42sylan2br 463 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  /\  B  Btwn  <. P ,  A >. )  /\  C  Btwn  <. P ,  B >. ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
4443expr 599 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( C  Btwn  <. P ,  B >.  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
4537, 44jaod 370 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( ( A  =/= 
P  /\  B  =/=  P  /\  C  =/=  P
)  /\  B  Btwn  <. P ,  A >. ) )  ->  ( ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
4645expr 599 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  ( B  Btwn  <. P ,  A >.  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
4727, 46jaod 370 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  ->  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  ->  ( ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
4847imp32 423 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) )
495, 6, 483jca 1134 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N
) ) )  /\  ( A  =/=  P  /\  B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  =/= 
P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) )
5049exp31 588 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( A  =/=  P  /\  B  =/=  P  /\  C  =/= 
P )  ->  (
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  -> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) ) )
514, 50syl5 30 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P
) )  ->  (
( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  -> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) ) )
5251imp3a 421 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( ( ( A  =/=  P  /\  B  =/=  P
)  /\  ( B  =/=  P  /\  C  =/= 
P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  ->  ( A  =/= 
P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
53 broutsideof2 26056 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  B >.  <-> 
( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
548, 9, 10, 11, 53syl13anc 1186 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. A ,  B >. 
<->  ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) ) )
55 broutsideof2 26056 . . . . 5  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. B ,  C >.  <-> 
( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
568, 9, 11, 12, 55syl13anc 1186 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. B ,  C >. 
<->  ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
5754, 56anbi12d 692 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  <->  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A 
Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) ) )
58 df-3an 938 . . . . 5  |-  ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  <->  ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) ) )
59 df-3an 938 . . . . 5  |-  ( ( B  =/=  P  /\  C  =/=  P  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) )  <->  ( ( B  =/=  P  /\  C  =/=  P )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )
6058, 59anbi12i 679 . . . 4  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( ( B  =/= 
P  /\  C  =/=  P )  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
61 an4 798 . . . 4  |-  ( ( ( ( A  =/= 
P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( ( B  =/= 
P  /\  C  =/=  P )  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
6260, 61bitr4i 244 . . 3  |-  ( ( ( A  =/=  P  /\  B  =/=  P  /\  ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. ) )  /\  ( B  =/=  P  /\  C  =/=  P  /\  ( B 
Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) )  <-> 
( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P ) )  /\  ( ( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) )
6357, 62syl6bb 253 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  <->  ( ( ( A  =/=  P  /\  B  =/=  P )  /\  ( B  =/=  P  /\  C  =/=  P
) )  /\  (
( A  Btwn  <. P ,  B >.  \/  B  Btwn  <. P ,  A >. )  /\  ( B  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  B >. ) ) ) ) )
64 broutsideof2 26056 . . 3  |-  ( ( N  e.  NN  /\  ( P  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( POutsideOf <. A ,  C >.  <-> 
( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
658, 9, 10, 12, 64syl13anc 1186 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( POutsideOf <. A ,  C >. 
<->  ( A  =/=  P  /\  C  =/=  P  /\  ( A  Btwn  <. P ,  C >.  \/  C  Btwn  <. P ,  A >. ) ) ) )
6652, 63, 653imtr4d 260 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  P  e.  ( EE `  N ) ) )  ->  ( ( POutsideOf <. A ,  B >.  /\  POutsideOf <. B ,  C >. )  ->  POutsideOf <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2599   <.cop 3817   class class class wbr 4212   ` cfv 5454   NNcn 10000   EEcee 25827    Btwn cbtwn 25828  OutsideOfcoutsideof 26053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-ee 25830  df-btwn 25831  df-cgr 25832  df-ofs 25917  df-ifs 25973  df-cgr3 25974  df-colinear 25975  df-fs 25976  df-outsideof 26054
  Copyright terms: Public domain W3C validator