Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ov2gc Unicode version

Theorem ov2gc 25123
 Description: Value of a composition. ovmpt2g 5982 adapted to this special case of a composite. (Contributed by FL, 14-Jul-2012.)
Hypothesis
Ref Expression
ov2gc.1
Assertion
Ref Expression
ov2gc
Distinct variable groups:   ,,   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem ov2gc
StepHypRef Expression
1 coexg 5215 . 2
2 coeq1 4841 . . 3
3 coeq2 4842 . . 3
4 ov2gc.1 . . 3
52, 3, 4ovmpt2g 5982 . 2
61, 5mpd3an3 1278 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 358   wceq 1623   wcel 1684  cvv 2788   ccom 4693  (class class class)co 5858   cmpt2 5860 This theorem is referenced by:  hmeogrplem  25535 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863
 Copyright terms: Public domain W3C validator