Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovelrn Unicode version

Theorem ovelrn 5996
 Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
ovelrn
Distinct variable groups:   ,,   ,,   ,,   ,,

Proof of Theorem ovelrn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fnrnov 5993 . . 3
21eleq2d 2350 . 2
3 ovex 5883 . . . . . 6
4 eleq1 2343 . . . . . 6
53, 4mpbiri 224 . . . . 5
65rexlimivw 2663 . . . 4
76rexlimivw 2663 . . 3
8 eqeq1 2289 . . . 4
982rexbidv 2586 . . 3
107, 9elab3 2921 . 2
112, 10syl6bb 252 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wceq 1623   wcel 1684  cab 2269  wrex 2544  cvv 2788   cxp 4687   crn 4690   wfn 5250  (class class class)co 5858 This theorem is referenced by:  efgredlem  15056  efgcpbllemb  15064  gsumval3  15191  lecldbas  16949  blrn  17962  qdensere  18279  tgioo  18302  xrge0tsms  18339  ioorf  18928  ioorinv  18931  ioorcl  18932  dyaddisj  18951  dyadmax  18953  mbfid  18991  ismbfd  18995  hhssnv  21841  xrge0tsmsd  23382  iccllyscon  23781  rellyscon  23782  bsi  25501  bsi2  25639  bsi3  25641  bsi4  25643 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5861
 Copyright terms: Public domain W3C validator