Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveq123i Unicode version

Theorem oveq123i 5872
 Description: Equality inference for operation value. (Contributed by FL, 11-Jul-2010.)
Hypotheses
Ref Expression
oveq123i.1
oveq123i.2
oveq123i.3
Assertion
Ref Expression
oveq123i

Proof of Theorem oveq123i
StepHypRef Expression
1 oveq123i.1 . . 3
2 oveq123i.2 . . 3
31, 2oveq12i 5870 . 2
4 oveq123i.3 . . 3
54oveqi 5871 . 2
63, 5eqtri 2303 1
 Colors of variables: wff set class Syntax hints:   wceq 1623  (class class class)co 5858 This theorem is referenced by:  vecval3b  25452  isntr  25873  mendvscafval  27498  cytpval  27528 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
 Copyright terms: Public domain W3C validator